已知函數(shù).
(1)試問的值是否為定值?若是,求出該定值;若不是,請說明理由;
(2)定義,其中,求;
(3)在(2)的條件下,令.若不等式對且恒成立,求實數(shù)的取值范圍.
【解析】
試題分析:(1)根據(jù)函數(shù)解析式的特點直接代入計算的值;(2)利用(1)中條件的條件,并注意到定義中第項與倒數(shù)第項的和這一條件,并利用倒序相加法即可求出的表達式,進而可以求出的值;(3)先利用和之間的關系求出數(shù)列的通項公式,然后在不等式中將與含的代數(shù)式進行分離,轉化為恒成立的問題進行處理,最終利用導數(shù)或作差(商)法,通過利用數(shù)列的單調性求出的最小值,最終求出實數(shù)的取值范圍.
試題解析:(1)的值為定值2.
證明如下:
.
(2)由(1)得.
令,則.
因為①,
所以②,
由①+②得,所以.
所以.
(3)由(2)得,所以.
因為當且時,
.
所以當且時,不等式恒成立.
設,則.
當時,,在上單調遞減;
當時,,在上單調遞增.
因為,所以,
所以當且時,.
由,得,解得.
所以實數(shù)的取值范圍是.
考點:函數(shù)、倒序相加法、導數(shù)
科目:高中數(shù)學 來源: 題型:
已知函數(shù).
(1)試判斷在上的單調性;
(2)當時,求證:函數(shù)的值域的長度大于(閉區(qū)間[m,n]的長度定義為n-m).
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年陜西省高三高考模擬考試(八)理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調性,并說明理由;
(2)若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年新課標高三上學期單元測試(1)理科數(shù)學卷 題型:解答題
(本題12分)已知函數(shù),.
(1)試判斷函數(shù)的單調性,并用定義加以證明;
(2)求函數(shù)的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com