19.若x∈[$\frac{π}{6},\frac{π}{3}$],則f(x)=$\frac{\sqrt{3}cosxsin(x-\frac{π}{6})}{sin2x}$的最大值為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.$\frac{3}{2}$

分析 由三角函數(shù)公式化簡可得f(x)=$\frac{3}{4}$-$\frac{\sqrt{3}}{4tanx}$,由x∈[$\frac{π}{6},\frac{π}{3}$]和不等式的性質(zhì)可得.

解答 解:化簡可得f(x)=$\frac{\sqrt{3}cosxsin(x-\frac{π}{6})}{sin2x}$
=$\frac{\sqrt{3}cosxsin(x-\frac{π}{6})}{2sinxcosx}$=$\frac{\sqrt{3}sin(x-\frac{π}{6})}{2sinx}$
=$\frac{\sqrt{3}(\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx)}{2sinx}$=$\frac{3}{4}$-$\frac{\sqrt{3}}{4tanx}$,
∵x∈[$\frac{π}{6},\frac{π}{3}$],∴tanx∈[$\frac{\sqrt{3}}{3}$,$\sqrt{3}$],
∴$\frac{\sqrt{3}}{4tanx}$∈[$\frac{1}{4}$,$\frac{3}{4}$],∴-$\frac{\sqrt{3}}{4tanx}$∈[-$\frac{3}{4}$,-$\frac{1}{4}$],
∴$\frac{3}{4}$-$\frac{\sqrt{3}}{4tanx}$∈[0,$\frac{1}{2}$]
故選:A.

點評 本題考查三角函數(shù)的最值,涉及三角函數(shù)的化簡和不等式的性質(zhì),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某單位有老年人30人,中年人90人,青年人60人,為了調(diào)查他們的身體健康狀況,采用分層抽樣的方法從他們中間抽取一個容量為36的樣本,則應(yīng)抽取老年人的人數(shù)是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=$\frac{a{x}^{2}-1}{x}$,且f′(x)≥0在定義域內(nèi)恒成立,則a的取值范圍為( 。
A.[0,+∞)B.[0,1]C.[1,+∞)D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足cosA=$\frac{3}{5}$,b•c=5.
(1)求△ABC的面積;
(2)若b+c=6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在底面是邊長為4的等邊三角形的直三棱柱ABO-A1B1O1中,|AA1|=6,D為A1B1的中點,
(1)A1的坐標(biāo)是(2$\sqrt{3}$,2,0);
(2)$\overrightarrow{OD}$的坐標(biāo)是($\sqrt{3}$,3,6);
(3)直線OD與面O1OAA1所成角是arcsin$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-1≤0}\\{y-2≤0}\end{array}\right.$,則z=$\frac{y}{x+1}$的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.△ABC中,$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}$=$\overrightarrow{0}$O為△ABC內(nèi)切圓的圓心,且AB=2,AC=3,BC=4.
(1)求證:$\overrightarrow{AG}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);
(2)求$\overrightarrow{AC}•\overrightarrow{AO}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對邊分別a,b,c,若f(A)=$\frac{\sqrt{3}}{4}$,a=$\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)是定義在R上的偶函數(shù),滿足:①f(x+2)=f(x);②當(dāng)x∈[0,1]時,f(x)=$\sqrt{2}$x,若P1,P2,…,P2016是f(x)在x∈[3,4]圖象上不同的2016個點,設(shè)A(-1,0),B(1,$\sqrt{2}$),mi=$\overrightarrow{AB}$•$\overrightarrow{A{P}_{i}}$(i=1,2,…,2016),則m1+m2+…+m2016=20160.

查看答案和解析>>

同步練習(xí)冊答案