10.某射手進(jìn)行一次射擊,射中環(huán)數(shù)及相應(yīng)的概率如下表
環(huán)數(shù)109877以下
概率0.250.30.20.15N
(1)根據(jù)上表求N的值(2)該射手射擊一次射中的環(huán)數(shù)小于8環(huán)的概率
(3)該射手射擊一次至少射中8環(huán)的概率.

分析 (1)利用概率和為1求解即可;
(2)利用對(duì)立事件的概率公式可得;
(3)利用互斥事件的概率公式求解即可

解答 解:某人射擊一次命中7環(huán)、8環(huán)、9環(huán)、10環(huán)、7以下的事件分別記為A、B、C、D,E
則可得P(A)=0.15,P(B)=0.2,P(C)=0.3,P(D)=0.25
(1)P(E)=1-0.25-0.3-0.2-0.15=0.1;
(2)射中環(huán)數(shù)不足8環(huán),P=1-P(B+C+D)=1-0.75=0.25;
(3)至少射中8環(huán)即為事件A、B、C有一個(gè)發(fā)生,據(jù)互斥事件的概率公式可得
P(A+B+C+D)=P(A)+P(B)+P(C)=0.15+0.2+0.3=0.65.

點(diǎn)評(píng) 本題考查了互斥事件有一個(gè)發(fā)生的概率公式的應(yīng)用,若A,B互斥,則P(A+B)=P(A)+P(B),當(dāng)一個(gè)事件的正面情況比較多或正面情況難確定時(shí),常考慮對(duì)立事件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且(x+1)f(x)+xf′(x)>0對(duì)x∈R恒成立,則下列函數(shù)在實(shí)數(shù)集內(nèi)一定是增函數(shù)的為(  )
A.f(x)B.xf(x)C.exf(x)D.xexf(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+y≤1}\\{y≤x}\\{y≥-2}\end{array}\right.$,則z=3x-y的最大值為( 。
A.1B.-4C.7D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)=log2(a-2x)+x-1存在零點(diǎn),則實(shí)數(shù)a的取值范圍是a≥2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.將二進(jìn)制101 11(2) 化為十進(jìn)制為23(10);再將該數(shù)化為八進(jìn)制數(shù)為27(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,sin(C-A)=1,sinB=$\frac{1}{3}$.
(I)求sinA的值; 
(II)設(shè)b=$\sqrt{6}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)=lg(x2+ax-a-1)在區(qū)間(2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(  )
A.(-3,+∞)B.[-3,+∞)C.(-4,+∞)D.[-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)$y=\frac{x}{{\root{3}{{{x^2}-1}}}}$的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={y|y=2x-1,x∈R},B={x|x-x2>0},則A∪B=( 。
A.(-1,+∞)B.(-1,1)C.(-1,0)D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案