精英家教網 > 高中數學 > 題目詳情

如圖所示,PA⊥平面ABCD,ABCD是矩形,AB=1,,點F是PB的中點,點E在邊BC上移動.

(1)若,求證:;
(2)若二面角的大小為,則CE為何值時,三棱錐的體積為.

(1)詳見解析;(2) .

解析試題分析:(1)要證明直線和直線垂直,往往通過證明直線和平面垂直來實現.本題只需證明直線,由,且為PB中點,可證明,故只需證明,再轉化為證明,由,從而可證明;(2)由(1)知,,故=60°,從而可求出,利用三棱錐的體積為,列關于的等式,求即可.

試題解析:,為PB中點, ∴     1分
⊥平面,∴     2分
是矩形,∴         3分
,而  4分
,∴       5分
,∴       6分
(2)由(1)知:   7分
為二面角的一個平面角,則=60°      8分
                                       9分
,解得           11分
時,三棱錐的體積為                     12分
考點:1、直線和平面垂直的判定和性質;2、三棱錐的體積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,三棱柱中,側棱垂直底面,
,,是棱的中點。
(1)證明:⊥平面
(2)設,求幾何體的體積。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(2014·貴陽模擬)一個幾何體是由圓柱ADD1A1和三棱錐E-ABC組合而成,點A,B,C在圓O的圓周上,其正(主)視圖,側(左)視圖的面積分別為10和12,如圖所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求證:AC⊥BD.
(2)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.
(1)求證:平面
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.

(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直三棱柱中, ,  ,的中點,△是等腰三角形,的中點,上一點.

(1)若∥平面,求;
(2)平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點.
 
(1)證明:BC1//平面A1CD;
(2)設AA1=AC=CB=2,AB=,求三棱錐C一A1DE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖1,在直角梯形中,,.把沿折起到的位置,使得點在平面上的正投影恰好落在線段上,如圖2所示,點分別為棱的中點.

(1)求證:平面平面;
(2)求證:平面;
(3)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖甲,⊙O的直徑AB=2,圓上兩點C、D在直徑AB的兩側,且∠CAB,∠DAB.沿直徑AB折起,使兩個半圓所在的平面互相垂直(如圖乙),FBC的中點,EAO的中點.根據圖乙解答下列各題:
 
(1)求三棱錐CBOD的體積;
(2)求證:CBDE;
(3)在上是否存在一點G,使得FG∥平面ACD?若存在,試確定點G的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案