【題目】一個(gè)籠子里關(guān)著只貓,其中有只白貓,只黑貓.把籠門打開一個(gè)小口,使得每次只能鉆出只貓.貓爭(zhēng)先恐后地往外鉆.如果只貓都鉆出了籠子,以表示只白貓被只黑貓所隔成的段數(shù).例如,在出籠順序?yàn)椤啊酢觥酢酢酢酢觥酢酢觥敝,則

1)求三只黑貓挨在一起出籠的概率;

2)求的分布列和數(shù)學(xué)期望.

【答案】1;(2)見解析.

【解析】

1)利用捆綁法計(jì)算三只黑貓挨在一起出籠的情況種數(shù),再利用古典概型的概率公式可求得所求事件的概率;

2)由題意可知,隨機(jī)變量的可能取值有、,利用排列組合思想求出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的分布列,利用數(shù)學(xué)期望公式可求得隨機(jī)變量的數(shù)學(xué)期望.

1)設(shè)“三只黑貓挨在一起出籠”為事件,將三只黑貓捆綁在一起,與其它只白貓形成個(gè)元素,

所以,

因此,三只黑貓挨在一起出籠的概率為

2)由題意可知,隨機(jī)變量的取值為、、,

其中時(shí),只白貓相鄰,則

,

,

所以,隨機(jī)變量的分布列如下表所示:

因此,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,底面為等邊三角形,E,F分別為,的中點(diǎn),,.

1)證明:平面

2)求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,面,底面為矩形,且,,,O的中點(diǎn),點(diǎn)E上,且

1)證明:

2)在上是否存在一點(diǎn)F,使,若存在,試確定點(diǎn)F的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.

1)證明:平面;

2)若的中點(diǎn),二面角等于60°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形區(qū)域OABC內(nèi)有以OA為半徑的圓弧.現(xiàn)決定從AB邊上一點(diǎn)D引一條線段DE與圓弧相切于點(diǎn)E,從而將正方形區(qū)域OABC分成三塊:扇形COE為區(qū)域I,四邊形OADE為區(qū)域II,剩下的CBDE為區(qū)域III.區(qū)域I內(nèi)栽樹,區(qū)域II內(nèi)種花,區(qū)域III內(nèi)植草.每單位平方的樹、花、草所需費(fèi)用分別為、,總造價(jià)是W,設(shè)

1)分別用表示區(qū)域I、IIIII的面積;

2)將總造價(jià)W表示為的函數(shù),并寫出定義域;

3)求為何值時(shí),總造價(jià)W取最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A過點(diǎn)且與直線相切.

1)求圓心的軌跡的方程;

2)過的直線與交于,兩點(diǎn),分別過,的垂線,垂足為,,線段的中點(diǎn)為.

①求證:

②記四邊形,的面積分別為,若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5人并排站成一行,如果甲乙兩人不相鄰,那么不同的排法種數(shù)是__________.(用數(shù)字作答);5人并排站成一行,甲乙兩人之間恰好有一人的概率是__________(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;

2)若直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰直角三角形沿斜邊上的高翻折,使二面角的大小為,翻折后的中點(diǎn)為.

)證明平面

)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案