【題目】已知底面為正方形的四棱錐,各側棱長都為,底面面積為16,以為球心,2為半徑作一個球,則這個球與四棱錐相交部分的體積是( )
A. B. C. D.
【答案】C
【解析】構造棱長為4的正方體,四棱錐O-ABCD的頂點O為正方體的中心,底面與正方體的一個底面重合.可知所求體積是正方體內切球體積的,所以這個球與四棱錐O-ABCD相交部分的體積是: .
本題選擇C選項.
點睛:與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數(shù)量關系,并作出合適的截面圖,求幾何體的體積,要注意分割與補形.將不規(guī)則的幾何體通過分割或補形將其轉化為規(guī)則的幾何體求解.
【題型】單選題
【結束】
13
【題目】若,為第二象限角,則__________.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知在四棱錐中,底面,,,,,點為棱的中點,
(1)試在棱上確定一點,使平面平面,說明理由;
(2)若為棱上一點,滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點和圓,過的動直線與圓交于、兩點,過作直線,交于點.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)若不經(jīng)過的直線與軌跡交于兩點,且.求證:直線 恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線的極坐標方程是,點是曲線上的動點.點滿足 (為極點).設點的軌跡為曲線.以極點為原點,極軸為軸的正半軸建立平面直角坐標系,已知直線的參數(shù)方程是,(為參數(shù)).
(1)求曲線的直角坐標方程與直線的普通方程;
(2)設直線交兩坐標軸于,兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】天氣預報說,在今后的三天中,每天下雨的概率都為.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:用表示下雨,從下列隨機數(shù)表的第行第列的開始讀取,直到讀取了組數(shù)據(jù),
18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10
55 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24
據(jù)此估計,這三天中恰有兩天下雨的概率近似為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是兩個非零平面向量,則有:
①若,則
②若,則
③若,則存在實數(shù),使得
④若存在實數(shù),使得,則或四個命題中真命題的序號為 __________.(填寫所有真命題的序號)
【答案】①③④
【解析】逐一考查所給的結論:
①若,則,據(jù)此有:,說法①正確;
②若,取,則,
而,說法②錯誤;
③若,則,據(jù)此有:,
由平面向量數(shù)量積的定義有:,
則向量反向,故存在實數(shù),使得,說法③正確;
④若存在實數(shù),使得,則向量與向量共線,
此時,,
若題中所給的命題正確,則,
該結論明顯成立.即說法④正確;
綜上可得:真命題的序號為①③④.
點睛:處理兩個向量的數(shù)量積有三種方法:利用定義;利用向量的坐標運算;利用數(shù)量積的幾何意義.具體應用時可根據(jù)已知條件的特征來選擇,同時要注意數(shù)量積運算律的應用.
【題型】填空題
【結束】
17
【題目】已知在中,,且.
(1)求角的大小;
(2)設數(shù)列滿足,前項和為,若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的偶函數(shù)和奇函數(shù),且.
(1)求函數(shù),的解析式;
(2)設函數(shù),記 .探究是否存在正整數(shù),使得對任意的,不等式恒成立?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①若函數(shù)在區(qū)間上單調遞增,則;
②若 (且),則的取值范圍是;
③若函數(shù),則對任意的,都有;
④若 (且),在區(qū)間上單調遞減,則.
其中所有正確命題的序號是______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)業(yè)合作社生產(chǎn)了一種綠色蔬菜共噸,如果在市場上直接銷售,每噸可獲利萬元;如果進行精加工后銷售,每噸可獲利萬元,但需另外支付一定的加工費,總的加工(萬元)與精加工的蔬菜量(噸)有如下關系:設該農(nóng)業(yè)合作社將(噸)蔬菜進行精加工后銷售,其余在市場上直接銷售,所得總利潤(扣除加工費)為(萬元).
(1)寫出關于的函數(shù)表達式;
(2)當精加工蔬菜多少噸時,總利潤最大,并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com