給出以下命題:
①?x∈R,sinx+cosx>1;
②?x∈R,x2-x+1<0;
③“x>1”是“|x|>1”充分不必要條件;
π
0
|cosx|dx=0.
其中假命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:求解三角函數(shù)的值域判斷①;配方求二次三項(xiàng)式的范圍判斷②;由充分條件和必要條件的概念判斷③;求定積分判斷④.
解答: 解:對(duì)于①,∵sinx+cosx=
2
sin(x+
π
4
)
,當(dāng)x=0時(shí),sinx+cosx=1,
∴命題①錯(cuò)誤;
對(duì)于②,∵x2-x+1=(x-
1
2
)2+
3
4
>0
,
∴命題②錯(cuò)誤;
對(duì)于③,
∵x>1能得到|x|>1,反之,由|x|>1,不見(jiàn)得有x>1,
∴“x>1”是“|x|>1”充分不必要條件,
命題③正確;
對(duì)于④,
π
0
|cosx|dx=
π
2
0
cosxdx
+∫
π
π
2
-cosxdx
=sinx
|
π
2
0
-sinx
|
π
π
2
=sin
π
2
-sin0-sinπ+sin
π
2
=2

∴命題④錯(cuò)誤.
∴假命題的個(gè)數(shù)是3個(gè).
故選:D.
點(diǎn)評(píng):本題考查了命題的真假判斷與應(yīng)用,考查了函數(shù)值域的求法,訓(xùn)練了定積分的求法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=
i
2-i
(i是虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
1
2+i
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,滿足an>0,q>1,且a3+a5=20,a2a6=64,則S5=( 。
A、31B、36C、42D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A,B兩個(gè)學(xué)生分別從2名數(shù)學(xué)教師和2名英語(yǔ)教師共4人中各選擇一位教師給自己補(bǔ)缺補(bǔ)差,若A,B不選同一位教師,則學(xué)生A選擇數(shù)學(xué)教師,學(xué)生B選擇英語(yǔ)教師的概率為(  )
A、
1
3
B、
5
12
C、
1
2
D、
7
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是以1為首項(xiàng)的等比數(shù)列,若a7•a11=100,則a9的值是(  )
A、-10B、10
C、±10D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若角A、B、C的對(duì)邊分別是a、b、c,則“a2+c2=b2+ac”,是“A、B、C依次成等差數(shù)列”的( 。
A、既不充分也不必要條件
B、充分不必要條件
C、必要不充分條件
D、充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(α+
π
6
)=
4
5
(α為銳角),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x-m)7=a0+a1x+a2x2+…+a7x7的展開(kāi)式中x4的系數(shù)是-35,則a1+a2+a3+…a7=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案