等差數(shù)列的前n項(xiàng)和,前2n項(xiàng)和,前3n項(xiàng)的和分別為S,T,R,則( 。
A、S2+T2=S(T+R)
B、R=3(T-S)
C、T2=SR
D、S+R=2T
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的“片段和”仍成等差數(shù)列可得S,T-S,R-T成等差數(shù)列,由等差中項(xiàng)可得.
解答: 解:由等差數(shù)列的“片段和”仍成等差數(shù)列,
可得:S,T-S,R-T成等差數(shù)列,
∴2(T-S)=S+R-T
變形可得R=3(T-S),
故選:B
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),得出“片段和”仍成等差數(shù)列是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2+ax+1≥0對(duì)一切實(shí)數(shù)x∈R都成立,則實(shí)數(shù)a的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)上函數(shù)f(x)滿足對(duì)任意x,y∈(0,+∞),都有xyf(xy)=xf(x)+yf(y),記數(shù)列an=f(2n),有以下命題:①f(1)=0; ②a1=a2; ③令函數(shù)g(x)=xf(x),則g(x)+g(
1
x
)=0;④令數(shù)列bn=2n+an,則數(shù)列(bn)為等比數(shù)列;其中真命題的為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若a=2,b+c=7,cosB=-
1
4
,則c=(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列判斷正確的是( 。
A、函數(shù)f(x)=
x2-2x
x-2
是奇函數(shù)
B、函數(shù)f(x)=x2-|x|是偶函數(shù)
C、函數(shù)f(x)=x0是非奇非偶函數(shù)
D、函數(shù)f(x)=2既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x2-
1
x
10的展開式中系數(shù)最大項(xiàng)是(  )
A、第5項(xiàng)
B、第6項(xiàng)
C、第5項(xiàng),第7項(xiàng)
D、第5項(xiàng),第6項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為坐標(biāo)原點(diǎn),A,B兩點(diǎn)的坐標(biāo)均滿足不等式組
x-3y+1≤0
x+y-3≤0
x-1≥0
,設(shè)
OA
OB
的夾角為θ,則tanθ的最大值為( 。
A、
1
2
B、
4
7
C、
3
4
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y,z∈R,若-1,x,y,z,-4成等比數(shù)列,則xyz的值為(  )
A、-4B、±4C、-8D、±8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,一種醫(yī)用輸液瓶可以視為兩個(gè)圓柱的組合體.開始輸液時(shí),滴管內(nèi)勻速滴下液體(滴管內(nèi)液體忽略不計(jì)),設(shè)輸液開始后x分鐘,瓶?jī)?nèi)液面與進(jìn)氣管的距離為h厘米,已知當(dāng)x=0時(shí),h=13.如果瓶?jī)?nèi)的藥液恰好156分鐘滴完.則函數(shù)h=f(x)的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案