二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年平遙中學(xué)理) 已知定義域?yàn)镽的二次函數(shù)f(x)的最小值為0且有f(1+x)=f(1-x),直線g(x)=4(x-1)
被f(x)的圖象截得的弦長為,數(shù)列{an}滿足a1=2,(an+1- an )g (an )+f(an )=0(n∈N*),
(1)求函數(shù)f(x)的表達(dá)式;
(2)求證an=( )n-1+1;
(3)設(shè)bn=3f(an) - g(an+1),求數(shù)列{bn}的最值及相應(yīng)的n。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年平遙中學(xué)理) 已知定義域?yàn)镽的二次函數(shù)f(x)的最小值為0且有f(1+x)=f(1-x),直線g(x)=4(x-1)
被f(x)的圖象截得的弦長為,數(shù)列{an}滿足a1=2,(an+1- an )g (an )+f(an )=0(n∈N*),
(1)求函數(shù)f(x)的表達(dá)式;
(2)求證an=( )n-1+1;
(3)設(shè)bn=3f(an) - g(an+1),求數(shù)列{bn}的最值及相應(yīng)的n。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知定義域?yàn)镽的二次函數(shù)f(x)的最小值為0,且有,直線圖象截得的弦長為,數(shù)列,
⑴ 求函數(shù)f(x)的解析式;
⑵ 求數(shù)列的通項(xiàng)公式;
⑶ 設(shè)的最值及相應(yīng)的n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省高一第一次月考數(shù)學(xué) 題型:解答題
(本題滿分12分)二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com