【題目】如圖,菱形與等邊所在平面互相垂直,,,,分別是線段,的中點(diǎn).

1)求證:平面;

2)求點(diǎn)到平面的距離.

【答案】1)證明見(jiàn)解析(2

【解析】

1)法一:通過(guò)構(gòu)造平行四邊形的方法,證得平面;法二:通過(guò)構(gòu)造面面平行的方法,證得平面

2)利用等體積法,計(jì)算出點(diǎn)到平面的距離.

1)法一:如圖,取線段的中點(diǎn),連接,是線段的中點(diǎn),

在菱形為線段中點(diǎn),

故四邊形為平行四邊形,

所以

又因?yàn)?/span>平面,平面,

所以平面

法二:如圖,取線段中點(diǎn),連接,

中,,

因?yàn)?/span>平面平面,

所以平面

在菱形中,,

因?yàn)?/span>平面,平面,

所以平面

又因?yàn)?/span>,且,平面

所以平面平面

因?yàn)?/span>平面,

所以平面

2)如圖,在等邊中取邊中點(diǎn),連接

,

因?yàn)槠矫?/span>平面且平面平面,

所以平面,

在菱形中,,是線段的中點(diǎn),

所以

連接,在中,,

中,,

中,

設(shè)點(diǎn)到平面的距離為,

,即

,

,

解得,所以點(diǎn)到平面的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1ab0)的右焦點(diǎn)為F,離心率為,且有3a24b2+1

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)F的直線l與橢圓C交于M,N兩點(diǎn),過(guò)點(diǎn)M作直線x3的垂線,垂足為點(diǎn)P,證明直線NP經(jīng)過(guò)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù),

(Ⅰ)求函數(shù)處的切線;

(Ⅱ)若函數(shù)處有最大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在創(chuàng)建全國(guó)衛(wèi)生文明城的過(guò)程中,環(huán)保部門(mén)對(duì)某市市民進(jìn)行了一次垃圾分類(lèi)知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每一位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示.

組別

頻數(shù)

25

150

200

250

225

100

50

(Ⅰ)已知此次問(wèn)卷調(diào)查的得分服從正態(tài)分布近似為這1000人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;

(Ⅱ)在(Ⅰ)的條件下,環(huán)保部門(mén)為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

i)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

ii)每次贈(zèng)送的隨機(jī)話費(fèi)和相應(yīng)的概率如下表.現(xiàn)市民甲要參加此次問(wèn)卷調(diào)查,記為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.

贈(zèng)送的隨機(jī)話費(fèi)(單位:元)

20

40

概率

附:若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形與等邊所在平面互相垂直,,分別是線段,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1,在中,,E中點(diǎn).為折痕將折起,使點(diǎn)C到達(dá)點(diǎn)D的位置,且為直二面角,F是線段上靠近A的三等分點(diǎn),連結(jié),,,如圖2.

1)證明:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其定義域?yàn)?/span>.(其中常數(shù),是自然對(duì)數(shù)的底數(shù))

1)求函數(shù)的遞增區(qū)間;

2)若函數(shù)為定義域上的增函數(shù),且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四面體中,,平面,分別為線段,的中點(diǎn),現(xiàn)將四面體以為軸旋轉(zhuǎn),則線段在平面內(nèi)投影長(zhǎng)度的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

1)討論上的最大值;

2)有幾個(gè),且為常數(shù)),使得函數(shù)上的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案