若函數(shù)f(x)=x3-3x2+2-a≤0在[-1,2]上恒成立,則a的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專(zhuān)題:
分析:首先由f(x)=x3-3x2+2-a,f′(x)=3x2-6x,令f′(x)=0,可得x=0或x=2,然后分①當(dāng)0≤x≤2和②當(dāng)-1≤x<0兩種情況討論,分別求出a的取值范圍,取交集即可.
解答: 解:由f(x)=x3-3x2+2-a,f′(x)=3x2-6x,
令f′(x)=0,可得x=0或x=2,
①當(dāng)0≤x≤2時(shí),在區(qū)間[0,2]上,f′(x)<0,
可得f(x)在[0,2]上是減函數(shù),
所以f(x)max=f(0)=2-a≤0,
解得a≥2;
②當(dāng)-1≤x<0時(shí),在區(qū)間[-1,0]上,f′(x)>0,
可得f(x)在[-1,0]上是增函數(shù),
所以f(x)min=f(-1)=-2-a≤0,
解得a≥-2;
綜上,a的取值范圍是[2,+∞).
故答案為:[2,+∞).
點(diǎn)評(píng):此題主要考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx)
(1)若f(x0)=2,x0∈[0,
π
2
],求x0的值
(2)在△ABC中,f(A)=2,a=
5
,c=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3+ax的圖象經(jīng)過(guò)點(diǎn)P(2,4).
(Ⅰ)求f(x)的表達(dá)式及其導(dǎo)數(shù)f′(x);
(Ⅱ)求f(x)在閉區(qū)間[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們把形如y=
b
|x|-a
(a>0,b>0)的函數(shù)稱(chēng)為“莫言函數(shù)”,并把其與y軸的交點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)稱(chēng)為“莫言點(diǎn)”,以“莫言點(diǎn)”為圓心凡是與“莫言函數(shù)”有公共點(diǎn)的圓,皆稱(chēng)之為“莫言圓”,則當(dāng)a=1,b=1時(shí),
(1)莫言函數(shù)的單調(diào)增區(qū)間為:
 

(2)所有的“莫言圓”中,面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M={(x,y)|x2+y2=1,0<y≤1},N={(x,y)|y=x+b,b∈R},并且M∩N≠∅,那么b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=ln(1+x)-
1
4
x2在[0,2]上的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)(
1+sinα
1-sinα
-
1-sinα
1+sinα
)•(
1+cosα
1-cosα
-
1-cosα
1+cosα
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x2+x-6
的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=6sin(
1
4
x-
π
6
)的初相是
 
,圖象最高點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案