數(shù)列滿足,.
(1)求證:為等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,對(duì)任意都有成立,求整數(shù)的最大值.
(1)(2)18
解析試題分析:(1)要證明是等差數(shù)列,只需證明是常數(shù),所以根據(jù)題意,利用,化簡(jiǎn),即可證明.
(2)將(1)中結(jié)論代入,而后設(shè)出,根據(jù)題意只需找到的最小值,令最小值大于.所以得判斷數(shù)列的增減性,利用,放縮判斷其與0的大小關(guān)系.而后根據(jù),可得結(jié)論.
試題解析:(1)
∴
∴為首次為-2,公差為-1的等差數(shù)列
∴
∴
(2)令
∴=
=
∴ ∴為單調(diào)遞增數(shù)列
∴∴
∴ 又所以的最大值為18
考點(diǎn):等差數(shù)列的證明;放縮法判斷數(shù)列的增減性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}滿足a3=5,a5﹣2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等比數(shù)列( n∈N*)中a1>1,公比q>0,設(shè)bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.
(1)求證:數(shù)列是等差數(shù)列;
(2)求前n項(xiàng)和Sn及通項(xiàng)an.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列 的各項(xiàng)均為正數(shù),,公比為,且,.
(1)求與; (2)設(shè)數(shù)列滿足,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項(xiàng)和為,且,數(shù)列為等差數(shù)列,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為,且,令.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)若,用數(shù)學(xué)歸納法證明是18的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前項(xiàng)和為,,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前100項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)數(shù)列中,其前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是數(shù)列的前項(xiàng)和,是數(shù)列的前項(xiàng)和,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com