如圖,四棱柱中, 是上的點且為中邊上的高.
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)線段上是否存在點,使平面?說明理由.
(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)詳見解析
解析試題分析:(Ⅰ)利用結合直線與平面平行的判定定理證明即可;(Ⅱ)利用已知條件先證明平面,進而得到;(Ⅲ)取的中點,連接,可以先證平面,再利用平行四邊形平移法證明四邊形為平行四邊形,由,進而得到平面,從而確定點的位置.
試題解析:(Ⅰ)證明:,且平面PCD,平面PCD,所以平面PDC
2分
(Ⅱ)證明:因為AB平面PAD,且PH平面PAD , 所以
又PH為中AD邊上的高,所以
又所以平面
而平面所以 7分
(Ⅲ)解:線段上存在點,使平面
理由如下:如圖,分別取的中點G、E
則
由
所以,
所以為平行四邊形,故
因為AB平面PAD,所以
因此,
因為為的中點,且,所以,因此
又,所以平面
14分
考點:直線與平面平行、直線與平面垂直
科目:高中數學 來源: 題型:解答題
已知長方體中,底面為正方形,面,,,點在棱上,且.
(Ⅰ)試在棱上確定一點,使得直線平面,并證明;
(Ⅱ)若動點在底面內,且,請說明點的軌跡,并探求長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,直三棱柱的側棱長為3,,且,、分別是棱、上的動點,且
(1)證明:無論在何處,總有;
(2)當三棱柱.的體積取得最大值時,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在直角梯形中,,∥,,為線段的中點,將沿折起,使平面⊥平面,得到幾何體.
(1)若,分別為線段,的中點,求證:∥平面;
(2)求證:⊥平面;
(3)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,圓錐頂點為.底面圓心為,其母線與底面所成的角為.和是底面圓上的兩條平行的弦,軸與平面所成的角為,
(Ⅰ)證明:平面與平面的交線平行于底面;
(Ⅱ)求.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com