精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系xOy中,曲線C的參數方程為 (α為參數),直線l的參數方程為 (t為參數),在以坐標原點O為極點,x軸正半軸為極軸的極坐標系中,過極點O的射線與曲線C相交于不同于極點的點A,且點A的極坐標為(2,θ),其中θ.

(1)θ的值;

(2)若射線OA與直線l相交于點B,求|AB|的值.

【答案】(1) ;(2) .

【解析】試題分析:

(1)曲線的極坐標方程,利用點的極坐標為,即可求解的值;

(2)若射線與直線相交于,求出的坐標,即可求解的值.

試題解析:

(1)曲線C的參數方程為為參數),普通方程為x2+(y-2)2=4,極坐標方程為ρ=4sin θ,

∵點A的極坐標為(2,θ),θ∈,∴θ=.

(2)直線l的參數方程為(t為參數),普通方程為x+y-4=0,點A的直角坐標為(-,3),射線OA的方程為y=-x,代入x+y-4=0,可得B(-2,6),因此|AB|==2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知AB是圓O的直徑,C,D是圓上不同兩點CDABH,ACAD,PA⊥圓O所在平面.

()求證:PBCD;

()PB,PBACAD,H到平面PBD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的準線方程為x=-1,過定點M(m,0)(m>0)作斜率為k的直線l交拋物線C于A,B兩點,E是M點關于坐標原點O的對稱點,若直線AE和BE的斜率分別為k1,k2,則k1+k2________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量a(sin x,mcos x),b(3,-1).

(1)ab,且m1,求2sin2x3cos2x的值;

(2)若函數f(x)a·b的圖象關于直線對稱,求函數f(2x)上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和Sn,且3anSn4(nN*).

(1)證明:{an}是等比數列;

(2)anan1之間插入n個數,使這n2個數成等差數列.記插入的n個數的和為Tn,求Tn的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面 , , 分別為線段上的點,且, , .

1)求證 平面;

2)若與平面所成的角為求平面與平面所成的銳二面角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線M的參數方程為 (θ為參數),若以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線N的極坐標方程為ρsin(θ+)=t(其中t為常數).

(Ⅰ)若曲線N與曲線M只有一個公共點,求t的值;

(Ⅱ)當t=-1時,求曲線M上的點與曲線N上的點的最小距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別是a,b,c,且2acosA=bcosC+ccosB.

(Ⅰ)求A的大;

(Ⅱ)若a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)在區(qū)間上的極小值等于,求a的值;

(2)令,設是函數的兩個極值點,若,求的最小值.

查看答案和解析>>

同步練習冊答案