【題目】已知數(shù)列{an}的前n項和Sn,且3an+Sn=4(n∈N*).
(1)證明:{an}是等比數(shù)列;
(2)在an和an+1之間插入n個數(shù),使這n+2個數(shù)成等差數(shù)列.記插入的n個數(shù)的和為Tn,求Tn的最大值.
【答案】(1)證明見解析;(2) .
【解析】試題分析:
(1)由已知得,則當(dāng)時, ,兩式相減,即可證明數(shù)列為首項為,公比為的等比數(shù)列;
(2)由(1)得,求得,求得,即得,即可求得的最大值.
試題解析:
(1)證明 因為3an+Sn=4,所以Sn=4-3an(n∈N*),
所以,當(dāng)n≥2時,有Sn-1=4-3an-1,
上述兩式相減,得an=-3an+3an-1,
即當(dāng)n≥2時,=.
又n=1時,a1=4-3a1,a1=1.
所以{an}是首項為1,公比為的等比數(shù)列.
(2)解 由(1)得an=a1·qn-1=,
所以Tn===,
因為Tn+1-Tn=-
=,
所以T1<T2<T3,T3=T4,T4>T5>T6>…,
所以Tn的最大值為T3=T4=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運輸公司接受了向一地區(qū)每天至少運送180 t物資的任務(wù),該公司有8輛載重為6 t的A型卡車和4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次,每輛卡車每天往返的費用為A型卡車320元,B型卡車504元,則公司如何調(diào)配車輛,才能使公司所花的費用最低,最低費用為________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ex(ln x-a)(e是自然對數(shù)的底數(shù),
e=2.71 828…).
(1)若y=f(x)在x=1處的切線方程為y=2ex+b,求a,b的值.
(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞減,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為,焦距為2c,且c, ,2成等比數(shù)列.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點B坐標(biāo)為(0, ),問是否存在過點B的直線l交橢圓C于M,N兩點,且滿足 (O為坐標(biāo)原點)?若存在,求出此時直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,過極點O的射線與曲線C相交于不同于極點的點A,且點A的極坐標(biāo)為(2,θ),其中θ∈.
(1)求θ的值;
(2)若射線OA與直線l相交于點B,求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公比為q的等比數(shù)列{an}中,已知a1=16,且a1,a2+2,a3成等差數(shù)列.
(Ⅰ)求q,an;
(Ⅱ)若q<1,求滿足a1-a2+a3-…+(-1)2n-1a2n>10的最小的正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為1∶3,且成績分布在[40,100],分數(shù)在80以上(含80)的同學(xué)獲獎.按文、理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
(1)求a的值,并計算所抽取樣本的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)填寫下面的2×2列聯(lián)表,并判斷能否有超過95%的把握認為“獲獎與學(xué)生的文、理科有關(guān)”?
文科生 | 理科生 | 合計 | |
獲獎 | 5 | ||
不獲獎 | |||
合計 | 200 |
附表及公式:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com