【題目】為橢圓的內接三角形,其中,為橢圓軸正半軸的交點,直線、斜率的乘積為的重心.的取值范圍.

【答案】

【解析】

易知,直線過原點.

此時,(定值).

設點,.

的取值范圍等價于求函數(shù)的取值范圍,其中,.

,

.

方程①對應的曲線是焦點為且長軸長為的橢圓.

(1)當方程①過點、時,由橢圓定義,知方程①可化為.

此時,橢圓上的任意一點,滿足,

當且僅當,時,上式等號成立,即橢圓上的其他點均在橢圓.

故方程①過橢圓上的其他點時會使增大.

從而,.

(2)當方程①過點時,由橢圓定義,知方程①可化為.

此時,橢圓上的任意一點,滿足,

當且僅當,時,上式等號成立,即橢圓上的其他點均在橢圓.

故方程①過橢圓上的其他點時會使減小.

從而,.

又等號成立時、中有一點會與重合,因此,等號不成立.

綜上,當方程①經(jīng)過橢圓上其他點時,由介值定理知.

的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某縣位于沙漠地帶,人與自然長期進行頑強的斗爭,到1996年底全縣的綠化率已達到30%(成為綠洲).從1997年開始,每年將出現(xiàn)這樣的局面,原有沙漠面積的16%被栽上樹,改造為綠洲,而同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?/span>

(1)設全縣面積為1,1996年底綠洲面積為,經(jīng)過年綠洲面積為.求證:

(2)至少需經(jīng)過多少年的努力才能使全縣的綠化率超過60%(年取整數(shù))?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學習小組對成都市一中心路段(限行速度為千米/小時)的擁堵情況進行調查統(tǒng)計,通過數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(/千米)與車流密度(千米/小時)之間存在如下關系:如果車流密度不超過該路段暢通無阻(車流速度為限行速度);當車流密度在時,車流速度是車流密度的一次函數(shù);車流密度一旦達到該路段交通完全癱瘓(車流速度為零).

1)求關于的函數(shù)

2)已知車流量(單位時間內通過的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】證明:在任意個人中,可以找到兩個人,使得其余個人中,至少有個人他們中的每一個,或者都認識、;或者都不認識、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)證明:,直線都不是曲線的切線;

(2)若,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年寒假是特殊的寒假,因為疫情全體學生只能在家進行網(wǎng)上在線學習,為了研究學生在網(wǎng)上學習的情況,某學校在網(wǎng)上隨機抽取120名學生對線上教育進行調查,其中男生與女生的人數(shù)之比為1113,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認為對線上教育是否滿意與性別有關;

滿意

不滿意

總計

男生

女生

合計

120

2)從被調查中對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某便利店每天以每件5元的價格購進若干鮮奶,然后以每件10元價格出售,如果當天賣不完,剩下的鮮奶作餐廚垃圾處理.便利店記錄了100天這種鮮奶的日需求量(單位:件)如表所示:

日需求量n(件)

140

150

160

170

180

190

200

頻數(shù)

10

20

16

16

15

12

11

100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

1)若便利店一天購進160件這種鮮奶,X表示當天的利潤(單位:元),求X的分布列與數(shù)學期望及方差;

2)若便利店一天購進160件或170件這種鮮奶,僅從獲得利潤大的角度考慮,你認為應購進160件還是170件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大。

3)設棱的中點為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B是單位圓O上的兩點(O為圓心),∠AOB=120°,點C是線段AB上不與A、B重合的動點.MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

同步練習冊答案