【題目】某縣位于沙漠地帶,人與自然長期進(jìn)行頑強(qiáng)的斗爭,到1996年底全縣的綠化率已達(dá)到30%(成為綠洲).從1997年開始,每年將出現(xiàn)這樣的局面,原有沙漠面積的16%被栽上樹,改造為綠洲,而同時(shí),原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?/span>

(1)設(shè)全縣面積為1,1996年底綠洲面積為,經(jīng)過年綠洲面積為.求證:

(2)至少需經(jīng)過多少年的努力才能使全縣的綠化率超過60%(年取整數(shù))?

【答案】(1)見解析(2)5

【解析】

(1)設(shè)現(xiàn)有沙漠面積為,經(jīng)過年后沙漠面積為.則,

依題意,由兩部分組成,一部分是原有的綠洲減去被侵蝕部分的剩余面積

另一部分是新綠化的面積.于是,

(2)由(1)得

依題意有,即,亦即,化為

為使精確到整數(shù),我們?nèi)?/span>的過剩近似值估算,化簡.解得

取最小整數(shù),經(jīng)驗(yàn)證知,故經(jīng)過5年的努力,綠化面積可超過60%.

這里用了估算.也可以由解出

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng),且的最大值為,求的值;

2)方程上的兩解分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線 .以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法正確的是( )

A. “弦”米,“矢”

B. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積()平方米

C. 按照弓形的面積計(jì)算實(shí)際面積為()平方米

D. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積比實(shí)際面積少算了大約0.9平方米(參考數(shù)據(jù) )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】名乒乓球選手進(jìn)行單循環(huán)賽(無和局),比賽結(jié)果顯示:任意5人中既有1人勝于其余4人,又有1人負(fù)于其余4人.則恰勝兩場的人數(shù)為______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三條內(nèi)線段、、交于點(diǎn)、用紅、藍(lán)兩種顏色對的三條邊線和三條內(nèi)線段染色,使同色的三線不交于一點(diǎn).證明:在圖中所有的三角形中,至少存在兩個(gè)同色三角形,且它的各邊或延長線被另一線截得的兩線段之比的和大于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的右準(zhǔn)線方程,離心率,左、右頂點(diǎn)分別為A,B,右焦點(diǎn)為F,點(diǎn)P在橢圓上,且位于x軸上方.

(Ⅰ)設(shè)直線的斜率為,直線的斜率為,求的最小值;

(Ⅱ)點(diǎn)Q在右準(zhǔn)線l上,且,直線x負(fù)半軸于點(diǎn)M,若,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足,表示不超過的最大整數(shù),( )

A. 2018 B. 2019 C. 2020 D. 2021

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為橢圓的內(nèi)接三角形,其中,為橢圓軸正半軸的交點(diǎn),直線斜率的乘積為,的重心.的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案