(本題滿分12分)
已知,,求點的坐標,使四邊形為直角梯形.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知菱形的邊長為,,.將菱形沿對角線折起,使,得到三棱錐.

(Ⅰ)若點是棱的中點,求證:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點是線段上一個動點,試確定點的位置,使得,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求異面直線PC與BD所成的角;
(2)在線段PB上是否存在一點E,使PC⊥平面ADE?若存在,確定E點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共10分)
三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是邊長為2的等邊三角形,D為AB邊中點,且CC1=2AB.

(1)(4′)求證:平面C1CD⊥平面ABC;
(2)(6′)求三棱錐D—CBB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在斜邊為AB的Rt△ABC,過A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.

(1)求證:BC⊥平面PAC.
(2)求證:PB⊥平面AEF.
(3)若AP=AB=2,試用tgθ(∠BPC=θ)表示△AEF的面積、當tgθ取何值時,△AEF的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

、如圖,四棱錐S—ABCD的底面是邊長為1的正方形,SD垂直于底面ABCD,SD=1,SB=.

(I)求證BCSC;。↖I)求平面SBC與平面ABCD所成二面角的大小;
(III)設(shè)棱SA的中點為M,求異面直線DM與SB所成角的大小

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分12分)
若圖為一簡單組合體,其底面ABCD為正方形,PD平面ABCD,EC//PD,且PD=2EC。

(1)求證:BE//平面PDA;
(2)若N為線段PB的中點,求證:EN平面PDB;
(3)若,求平面PBE與平面ABCD所成的二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

本題(1)(2)(3)三個選答題,每小題5分,請考生任選1題作答,如果多做,則按所做的前1題計分.
(1)(選修4-1,幾何證明選講)如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點E,F(xiàn)分別為線段AB,CD的中點,則EF="          " .

(2)(選修4-4,坐標系與參數(shù)方程)在極坐標系(中,曲線的交點的極坐標為         .
(3)(選修4-1,不等式選講)
已知函數(shù).若不等式,則實數(shù)的值為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

( (本小題滿分12分)
在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.

(1)、求直線AP與平面BCC1B1所成的角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)、求點P到平面ABD1的距離.

查看答案和解析>>

同步練習冊答案