【題目】按下面的流程圖進(jìn)行計(jì)算.若輸出的,則輸入的正實(shí)數(shù)值的個(gè)數(shù)最多為( )

A. B. C. D.

【答案】A

【解析】程序框圖的用途是數(shù)列求和,當(dāng)x>100時(shí)結(jié)束循環(huán),輸出x的值為202:

當(dāng)202=3x+1,解得x=67;即輸入x=67時(shí),輸出結(jié)果202.

202=3(3x+1)+1,解得x=22;即輸入x=22時(shí),輸出結(jié)果202.

202=3(3(3x+1)+1)+1.即201=3(3(3x+1)+1),

∴67=3(3x+1)+1,即22=3x+1,解得x=7,輸入x=7時(shí),輸出結(jié)果202.

202=3(3(3(3x+1)+1)+1)+1.解得x=2,輸入x=2時(shí),輸出結(jié)果202.

202=3(3(3(3(3x+1)+1)+1)+1)+1.解得x=,輸入x=時(shí),輸出結(jié)果202.

共有5個(gè)不同的x。

故答案為A。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

Ⅰ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;

Ⅱ)當(dāng)的圖像經(jīng)過點(diǎn)時(shí),求的值及函數(shù)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形為等腰梯形, , 沿對(duì)角線將旋轉(zhuǎn),使得點(diǎn)至點(diǎn)的位置,此時(shí)滿足.

(1)判斷的形狀,并證明;

(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的離心率為,過其右焦點(diǎn)與長(zhǎng)軸垂直的直線與橢圓在第一象限相交于點(diǎn), .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左頂點(diǎn)為,右頂點(diǎn)為,點(diǎn)是橢圓上的動(dòng)點(diǎn),且點(diǎn)與點(diǎn), 不重合,直線與直線相交于點(diǎn),直線與直線相交于點(diǎn),求證:以線段為直徑的圓恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是( )

A. 命題“若,則”的逆否命題為“若,則

B. 若命題, ”,則命題的否定為“,

C. ”是“”的充分不必要條件

D. ”是“直線與直線互為垂直”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點(diǎn),曲線的參考方程為為參數(shù)).

(1)求曲線上的點(diǎn)到直線的距離的最大值與最小值;

(2)過點(diǎn)與直線平行的直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)空間幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)時(shí),上的單調(diào)區(qū)間

(2), 均恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右有頂點(diǎn)分別是、,上頂點(diǎn)是,圓的圓心到直線的距離是,且橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合.

(Ⅰ)求橢圓的方程;

(Ⅱ)平行于軸的動(dòng)直線與橢圓和圓在第一象限內(nèi)的交點(diǎn)分別為、,直線、軸的交點(diǎn)記為.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案