2.設(shè)變量x,y滿(mǎn)足$\left\{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x≥0}\end{array}\right.$,則x+2y的最大值為2.

分析 先畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,分析后易得目標(biāo)函數(shù)z=x+2y的最大值.

解答 解:由約束條件$\left\{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x≥0}\end{array}\right.$,得如圖所示的三角形區(qū)域,由$\left\{\begin{array}{l}{x+y=1}\\{x=0}\end{array}\right.$
可得頂點(diǎn)A(0,1),令z=x+2y,平移直線(xiàn)z=x+2y,
直線(xiàn)z=x+2y過(guò)點(diǎn) A(0,1)時(shí),z取得最大值為2;
故答案為:2.

點(diǎn)評(píng) 在解決線(xiàn)性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫(huà)出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c為常數(shù),且a≠0),滿(mǎn)足條件f(0)=0,f(1+x)=f(1-x)恒成立,且方程f(x)=x有兩個(gè)相等的實(shí)數(shù)根.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別是[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為2,則可輸入的實(shí)數(shù)x值的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若向量$\overrightarrow a=({1,0}),\overrightarrow b=({2,1}),\overrightarrow c=({x,1})$滿(mǎn)足$({3\overrightarrow a-\overrightarrow b})⊥\overrightarrow c$,則x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)h(x)=ax3-1(a∈R),g(x)=lnx,f(x)=h(x)+3xg(x)(e為自然對(duì)數(shù)的底數(shù)).
(I)若f(x)圖象過(guò)點(diǎn)(1,-1),求f(x)的單調(diào)區(qū)間;
(II)若f(x)在區(qū)間($\frac{1}{e}$,e)上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(III)函數(shù)F(x)=(a-$\frac{1}{3}$)x3+$\frac{1}{2}$x2g(a)-h(x)-1,當(dāng)a>e${\;}^{\frac{10}{3}}$時(shí),函數(shù)F(x)過(guò)點(diǎn)A(1,m)的切線(xiàn)至少有2條,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線(xiàn)C1的極坐標(biāo)方程為ρ2=$\frac{3}{{1+2{{cos}^2}x}}$,直線(xiàn)l的極坐標(biāo)方程為ρ=$\frac{4}{sinθ+cosθ}$.
( I)寫(xiě)出曲線(xiàn)C1與直線(xiàn)l的直角坐標(biāo)方程;
( II)設(shè)Q為曲線(xiàn)C1上一動(dòng)點(diǎn),求點(diǎn)Q到直線(xiàn)l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知i是虛數(shù)單位,則復(fù)數(shù)z=$\frac{4+3i}{3-4i}$的共軛復(fù)數(shù)的虛部是(  )
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.計(jì)算:
(1)${({\frac{16}{81}})^{-\frac{3}{4}}}+{log_3}\frac{5}{4}+{log_3}\frac{4}{5}$
(2)log2.56.25+lg0.001+ln$\sqrt{e}+{2^{-1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)定義在R上的連續(xù)函數(shù)f(x)滿(mǎn)足:
(1)對(duì)任意的實(shí)數(shù)x,都有f(-x)-f(x)=0;
(2)對(duì)任意的實(shí)數(shù)x,都有f(x+π)+f(x)=1;
(3)當(dāng)x∈[0,π]時(shí),0≤f(x)≤1;
(4)當(dāng)x∈(0,$\frac{π}{2}$)∪($\frac{π}{2}$,π)時(shí),有(x-$\frac{π}{2}$)f′(x)>0(其中f′(x)為函數(shù)f(x)的導(dǎo)函數(shù)).
則方程f(x)=|sinx|在[-2π,2π]上的根的個(gè)數(shù)為(  )
A.4B.6C.8D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案