【題目】已知定點(diǎn),圓,過(guò)R點(diǎn)的直線交圓于M,N兩點(diǎn)過(guò)R點(diǎn)作直線SMQ點(diǎn).

1)求Q點(diǎn)的軌跡方程;

2)若A,BQ的軌跡與x軸的左右交點(diǎn),為該軌跡上任一動(dòng)點(diǎn),設(shè)直線APBP分別交直線l于點(diǎn)M,N,判斷以MN為直徑的圓是否過(guò)定點(diǎn)。如圓過(guò)定點(diǎn),則求出該定點(diǎn);如不是,說(shuō)明理由.

【答案】(1) ;(2)MN為直徑的圓經(jīng)過(guò)定點(diǎn)

【解析】

(1) 利用,,可以推出,

根據(jù)可知: 動(dòng)點(diǎn)的軌跡是以 為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,進(jìn)而可以寫(xiě)出Q點(diǎn)的軌跡方程.

(2)設(shè),求出的坐標(biāo)后,再求出 的中點(diǎn)坐標(biāo),然后求出以 為直徑的圓的方程,可求得 為定值,所以圓過(guò)定點(diǎn).

(1)如圖:

因?yàn)?/span>,,

所以,

所以,

根據(jù)橢圓的定義知:動(dòng)點(diǎn)的軌跡是以 為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,

這里,

所以 點(diǎn)的軌跡方程為:.

(2)由題可知,設(shè),

所以,則直線的方程為:,

,,

所以 ,

因?yàn)?/span>,則直線的方程為:,

, ,所以,

所以的中點(diǎn)坐標(biāo)為,此時(shí)圓的方程為:

,

,,,所以 , 解得:,

故以MN為直徑的圓經(jīng)過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:今有曲池,上中周二丈,外周四丈,廣一丈,下中周一丈四尺,外周二丈四尺,廣五尺,深一丈,問(wèn)積幾何?其意思為:今有上下底面皆為扇形的水池,上底中周2丈,外周4丈,寬1丈;下底中周14尺,外周長(zhǎng)24尺,寬5尺;深1丈.問(wèn)它的容積是多少?則該曲池的容積為( )立方尺(1丈=10尺,曲池:上下底面皆為扇形的土池,其容積公式為[上寬+下寬)下寬+上寬)深)

A.B.1890C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過(guò)點(diǎn)

1)求橢圓的方程;

2)設(shè)不過(guò)原點(diǎn)的直線與該橢圓交于兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,一個(gè)長(zhǎng)軸頂點(diǎn)在直線上,若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為.

1)求該橢圓的方程.

2)若,試問(wèn)的面積是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,左右頂點(diǎn)分別為.經(jīng)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).

1)求橢圓方程及離心率.

2)當(dāng)直線的傾斜角為時(shí),求線段的長(zhǎng);

3)記的面積分別為,求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為t為參數(shù)),其中α∈(0),以原點(diǎn)O為點(diǎn)x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2sinθ0

1)寫(xiě)出直線l1的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;

2)設(shè)直線l1,l2分別與曲線C交于點(diǎn)AB(非坐標(biāo)原點(diǎn))求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為F,點(diǎn)B是橢圓C的短軸的一個(gè)端點(diǎn),ΔOFB的面積為,橢圓C上的兩點(diǎn)H、G關(guān)于原點(diǎn)O對(duì)稱,且、的等差中項(xiàng)為2

1)求橢圓的方程;

2)是否存在過(guò)點(diǎn)M2,1)的直線與橢圓C交于不同的兩點(diǎn)P、Q,且使得成立?若存在,試求出直線的方程;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】貴陽(yáng)市交管部門于20184月對(duì)貴陽(yáng)市長(zhǎng)期執(zhí)行的“兩限”政策進(jìn)行了調(diào)整,調(diào)整后貴陽(yáng)市貴A普客小汽車擁有和外地牌照汽車一樣的駛?cè)胍画h(huán)開(kāi)四停四的權(quán)利,為統(tǒng)計(jì)開(kāi)放政策實(shí)施后貴陽(yáng)市一環(huán)內(nèi)城區(qū)的交通流量狀況,市交管部門抽取了某月30天內(nèi)的日均汽車流量與實(shí)際容納量進(jìn)行對(duì)比,比值記為,若該比值不超過(guò)1稱為“暢通”,否則稱為“擁堵”,如圖所示的程序框圖實(shí)現(xiàn)的功能是(

A.30天內(nèi)交通的暢通率B.30天內(nèi)交通的擁堵率

C.30天內(nèi)交通的暢通天數(shù)D.30天內(nèi)交通的擁堵天數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=|3x4||x+1|

1)解不等式fx)>5;

2)若存在實(shí)數(shù)x滿足ax+afx)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案