【題目】已知數(shù)列是首項(xiàng)為1的等差數(shù)列,數(shù)列滿足,且.

(1)求數(shù)列的通項(xiàng)公式;

(2)令,求數(shù)列的前項(xiàng)和.

【答案】(1) ;(2) .

【解析】試題分析: 1根據(jù)數(shù)列的遞推關(guān)系式以及等比數(shù)列的定義,得出是一個(gè)等比數(shù)列,根據(jù)基本量運(yùn)算求解即可;(2)先求出等差數(shù)列的通項(xiàng)公式,代入,根據(jù)錯(cuò)位相減法求出數(shù)列的前n項(xiàng)和.

試題解析:

1,,

是首項(xiàng)為,公比為3的等比數(shù)列,

,即.

(2)由(1)知, ,則,

,

,

②得

..

點(diǎn)睛: 用錯(cuò)位相減法求和應(yīng)注意的問(wèn)題 :(1)要善于識(shí)別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形; (2)在寫出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“Sn-qSn”的表達(dá)式; (3)在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線交曲線,兩點(diǎn),交曲線,兩點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題的序號(hào)是__________

①“若,則”的否命題;

②“,函數(shù)在定義域內(nèi)單調(diào)遞增”的否定;

③“”是“”的必要條件;

④函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲盒子中有個(gè)紅球,個(gè)藍(lán)球乙盒子中有個(gè)紅球,個(gè)藍(lán)球同時(shí)從甲乙兩個(gè)盒子中取出個(gè)球進(jìn)行交換,(a)交換后,從甲盒子中取1個(gè)球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個(gè)數(shù)記為.則(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,焦點(diǎn)在軸上的橢圓與焦點(diǎn)在軸上的橢圓都過(guò)點(diǎn),中心都在坐標(biāo)原點(diǎn),且橢圓的離心率均為

求橢圓與橢圓的標(biāo)準(zhǔn)方程;

Ⅱ)過(guò)點(diǎn)M的互相垂直的兩直線分別與,交于點(diǎn)A,B(點(diǎn)A、B不同于點(diǎn)M),當(dāng)的面積取最大值時(shí),求兩直線MA,MB斜率的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)具有性質(zhì)__________.(填入所有正確性質(zhì)的序號(hào))

①最大值為,圖象關(guān)于直線對(duì)稱;

②圖象關(guān)于軸對(duì)稱;

③最小正周期為

④圖象關(guān)于點(diǎn)對(duì)稱;

⑤在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=xlnxx2ax+1

1)設(shè)gx)=f′(x),求gx)的單調(diào)區(qū)間;

2)若fx)有兩個(gè)極值點(diǎn)x1,x2,求證:x1+x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海水養(yǎng)殖場(chǎng)使用網(wǎng)箱養(yǎng)殖的方法,收獲時(shí)隨機(jī)抽取了 100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:),其頻率分布直方圖如圖:

定義箱產(chǎn)量在(單位:)的網(wǎng)箱為“穩(wěn)產(chǎn)網(wǎng)箱”, 箱產(chǎn)量在區(qū)間之外的網(wǎng)箱為“非穩(wěn)產(chǎn)網(wǎng)箱”.

(1)從該養(yǎng)殖場(chǎng)(該養(yǎng)殖場(chǎng)中的網(wǎng)箱數(shù)量是巨大的)中隨機(jī)抽取3個(gè)網(wǎng)箱.將頻率視為概率,設(shè)其中穩(wěn)產(chǎn)網(wǎng)箱的個(gè)數(shù)為,求的分布列與期望

(2)從樣本中隨機(jī)抽取3個(gè)網(wǎng)箱,設(shè)其中穩(wěn)產(chǎn)網(wǎng)箱的個(gè)數(shù)為,試比較的期望的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng) 時(shí),求曲線 在點(diǎn) 處的切線方程;

(2)求 的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案