精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知曲線,曲線,P是平面上一點,若存在過點P的直線與都有公共點,則稱P“C1—C2型點

(1)在正確證明的左焦點是“C1—C2型點時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);

(2)設直線有公共點,求證,進而證明原點不是“C1—C2型點;

(3)求證:圓內的點都不是“C1—C2型點

【答案】見解析

【解析】

1C1的左焦點為,過F的直線C1交于,與C2交于,故C1的左焦點為“C1-C2型點,且直線可以為;

2)直線C2有交點,則

,若方程組有解,則必須;

直線C2有交點,則

,若方程組有解,則必須

故直線至多與曲線C1C2中的一條有交點,即原點不是“C1-C2型點

3)顯然過圓內一點的直線若與曲線C1有交點,則斜率必存在;

根據對稱性,不妨設直線斜率存在且與曲線C2交于點,則

直線與圓內部有交點,故

化簡得,

若直線與曲線C1有交點,則

化簡得,

①②得,

但此時,因為,即式不成立;

時,式也不成立

綜上,直線若與圓內有交點,則不可能同時與曲線C1C2有交點,

即圓內的點都不是“C1-C2型點

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,圓與長軸是短軸兩倍的橢圓:相切于點

(1)求橢圓與圓的方程;

(2)過點引兩條互相垂直的兩直線與兩曲線分別交于點與點(均不重合).為橢圓上任一點,記點到兩直線的距離分別為,求的最大值,并求出此時的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在上的函數,如果滿足:對任意,存在常數,都有成立,則稱上的有界函數,其中稱為函數的上界.

1)設,判斷上是否為有界函數,若是,請說明理由,并寫出的所有上界的集合;若不是,也請說明理由;

2)若函數上是以為上界的有界函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項數列,滿足:對任意正整數,都有,,成等差數列,,,成等比數列,且

)求證:數列是等差數列;

)求數列,的通項公式;

)設=++…+,如果對任意的正整數,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,傾斜角為a的直線經過拋物線的焦點F,且與拋物線交于A、B兩點.

1)求拋物線的焦點F的坐標及準線的方程;

2)若a為銳角,作線段AB的垂直平分線mx軸于點P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中

1)當時,求曲線在點處的切線方程;

2)若函數存在最小值,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓上兩個不同的點、關于直線對稱.

1)若已知為橢圓上動點,證明:;

2)求實數的取值范圍;

3)求面積的最大值(為坐標原點).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦點在x軸上,一個頂點為,離心率為,過橢圓的右焦點F的直線l與坐標軸不垂直,且交橢圓于A,B兩點.

求橢圓的方程;

設點C是點A關于x軸的對稱點,在x軸上是否存在一個定點N,使得C,B,N三點共線?若存在,求出定點的坐標;若不存在,說明理由;

,是線段為坐標原點上的一個動點,且,求m的取值范圍.

查看答案和解析>>

同步練習冊答案