【題目】定義在R上的函數(shù)f(x)對一切實數(shù)x、y都滿足f(x)≠0,且f(x+y)=f(x)f(y),已知f(x)在(0,+∞)上的值域為(0,1),則f(x)在R上的值域是( )
A.R
B.(0,1)
C.(0,+∞)
D.(0,1)∪(1,+∞)
【答案】A
【解析】解:因為定義在R上的函數(shù)f(x)對一切實數(shù)x、y都滿足f(x)≠0,且f(x+y)=f(x)f(y),
令x=y=0可得f(0)=f(0)f(0),
解得f(0)=1
再令y=﹣x,則可得f(0)=f(x)f(﹣x)=1,
又f(x)在(0,+∞)上的值域為(0,1),
所以f(x)在(﹣∞,0)上的值域為(1,+∞)
綜上,f(x)在R上的值域是R
故選A.
【考點精析】本題主要考查了函數(shù)的值域的相關知識點,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,定義點P(x1 , y1)、Q(x2 , y2)之間的“直角距離”為L(P,Q)=|x1﹣x2|+|y1﹣y2|,已知點A(x,1)、B(1,2)、C(5,2)三點.
(1)若L(A,B)>L(A,C),求x的取值范圍;
(2)當x∈R時,不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品,則X的最大值是( )
A.M
B.n
C.min{M,n}
D.max{M,n}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】F(x)=(x3﹣2x)f(x)(x≠0)是奇函數(shù),且f(x)不恒等于零,則f(x)為( )
A.奇函數(shù)
B.偶函數(shù)
C.奇函數(shù)或偶函數(shù)
D.非奇非偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列1,-3,5,-7,9,…的一個通項公式為( )
A.an=2n-1
B.an=(-1)n(1-2n)
C.an=(-1)n(2n-1)
D.an=(-1)n(2n+1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=lg(x2﹣4x+3)的單調(diào)遞增區(qū)間為( )
A.(﹣∞,1)
B.(﹣∞,2)
C.(3,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若全集U={1,2,3,4,5,6},M={2,3},N={1,3},則集合{4,5,6}等于( )
A.M∪N
B.M∩N
C.(UM)∩(UN)
D.((UM)∪(UN)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.冪函數(shù)的圖象恒過(0,0)點
B.指數(shù)函數(shù)的圖象恒過(1,0)點
C.對數(shù)函數(shù)的圖象恒在y軸右側
D.冪函數(shù)的圖象恒在x軸上方
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b﹣a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2﹣1)+(5﹣3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x﹣[x],其中x∈R.設f(x)=[x]{x},g(x)=x﹣1,當0≤x≤k時,不等式f(x)<g(x)解集區(qū)間的長度為5,則k的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com