【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸的極坐標(biāo)系下,曲線的方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)設(shè)曲線和曲線的交點為、,求.

【答案】(.(

【解析】試題分析:本題考查直角坐標(biāo)系與極坐標(biāo)之間的互化,考查學(xué)生利用坐標(biāo)之間的轉(zhuǎn)化求解.(1)消去參數(shù)可得曲線的普通方程,利用,可把曲線的極坐標(biāo)方程轉(zhuǎn)化為普通方程.2)根據(jù)曲線, 的普通方程可判斷出曲線為直線,曲線為圓,然后利用弦長公式 (其中表示圓的半徑, 表示圓心到直線的距離)求值即可.

試題解析:()曲線的普通方程為,曲線的直角坐標(biāo)方程為3

)曲線可化為,表示圓心在,半徑的圓,

則圓心到直線的距離為,所以10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含的同學(xué)獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).

(1)填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為獲獎與學(xué)生的文理科有關(guān)?

(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取名學(xué)生,獲獎學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

文科生

理科生

合計

獲獎

不獲獎

合計

附表及公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè)

①記的導(dǎo)函數(shù)為,求

②若方程有兩個不同實根,求實數(shù)的取值范圍;

(2)若在上存在一點使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通項公式;

(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中,AB=1,AD=,F(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體ABCD,如圖所示.

(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應(yīng)的a值;若不垂直,請說明理由.

(2)當(dāng)四面體ABCD的體積最大時,求二面角ACDB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.

(1)求k的取值范圍;

(2)若=12,其中O為坐標(biāo)原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】葫蘆島市某工廠黨委為了研究手機對年輕職工工作和生活的影響情況做了一項調(diào)查:在廠內(nèi)用簡單隨機抽樣方法抽取了30名25歲至35歲的職工,對其“每十天累計看手機時間”(單位:小時)進行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計看手機時間”的平均值和所抽取的女生 “每十天累計看手機時間”的中位數(shù)分別是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生身高情況,某校以的比例對全校1000名學(xué)生按性別進行分層抽樣調(diào)查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):

(1)計算所抽取的男生人數(shù),并估計男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式-kx+1≤0的解集非空,則k的取值范圍為________.

查看答案和解析>>

同步練習(xí)冊答案