圓臺(tái)上、下底面面積分別為、, 側(cè)面積是, 這個(gè)圓臺(tái)的高為                

試題分析:由于圓臺(tái)的側(cè)面積公式為.所以母線.所以由半徑差與高即母線構(gòu)成的直角三角形可解出高等于.故填.本小題關(guān)鍵是通過(guò)側(cè)面積求出母線的長(zhǎng),從而利用重要的直角三角形解出圓臺(tái)的高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.

(1)求異面直線所成角的余弦值;
(2)求二面角的正弦值;
(3)求此幾何體的體積的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在長(zhǎng)方體中,為線段中點(diǎn).

(1)求直線與直線所成的角的余弦值;
(2)若,求二面角的大;
(3)在棱上是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在三棱錐P-ABC中側(cè)棱PA,PB,PC兩兩垂直,PA=1,PB=2,PC=3,則三棱錐的外接球的表面積
為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)透明密閉的正方體容器中,恰好盛有該容器一半容積的水,任意轉(zhuǎn)動(dòng)這個(gè)正方體,則水面在容器中的形狀可以是:(1)三角形;(2)長(zhǎng)方形;(3)正方形;(4)正六邊形.其中正確的結(jié)論是____________.(把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一個(gè)正棱錐的側(cè)棱長(zhǎng)是3cm,用平行于正棱錐底面的平面截該棱錐,若截面面積是底面面積的,則截去小棱錐的側(cè)棱長(zhǎng)是         cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若空間三條直線滿(mǎn)足,,則直線( ).
A.一定平行B.一定相交C.一定是異面直線D.一定垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),AB=2.∠ASC=∠BSC=60°,則三棱錐S—ABC的體積為_(kāi)____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于四面體ABCD,以下命題中,真命題的序號(hào)為       (填上所有真命題的序號(hào))
①若AB=AC,BD=CD,E為BC中點(diǎn),則平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,則BD⊥AC;
③若所有棱長(zhǎng)都相等,則該四面體的外接球與內(nèi)切球的半徑之比為2:1;
④若以A為端點(diǎn)的三條棱所在直線兩兩垂直,則A在平面BCD內(nèi)的射影為△BCD的垂心;
⑤分別作兩組相對(duì)棱中點(diǎn)的連線,則所得的兩條直線異面。

查看答案和解析>>

同步練習(xí)冊(cè)答案