(本小題滿(mǎn)分12分) 已知圓過(guò)兩點(diǎn),且圓心上.
(1)求圓的方程;
(2)設(shè)是直線(xiàn)上的動(dòng)點(diǎn),是圓的兩條切線(xiàn),為切點(diǎn),求四邊形面積的最小值.
(1) (x-1)2+(y-1)2=4. (2) S=2=2=2.

試題分析:(1)根據(jù)題意,設(shè)出圓心(a,b),然后圓過(guò)兩點(diǎn),其中垂線(xiàn)必定過(guò)圓心,且圓心上.聯(lián)立直線(xiàn)的方程組得到交點(diǎn)坐標(biāo)即為圓心坐標(biāo),進(jìn)而兩點(diǎn)距離公式求解半徑,得到圓的方程。
(2)因?yàn)樗倪呅蜳AMB的面積S=SPAM+SPBM=|AM|·|PA|+|BM|·|PB|,根據(jù)兩個(gè)三三角形的底相同,高相等,那么即可知S=2|PA|,只需要求解切線(xiàn)長(zhǎng)|PA|的最小值即可。
解:(1)設(shè)圓的方程為:(x-a)2+(y-b)2=r2(r>0).
根據(jù)題意,得          ﹍﹍﹍﹍﹍﹍﹍3分
解得a=b=1,r=2,                           ﹍﹍﹍﹍﹍﹍﹍5分
故所求圓M的方程為(x-1)2+(y-1)2=4.          ﹍﹍﹍﹍﹍﹍﹍6分
(2)因?yàn)樗倪呅蜳AMB的面積S=SPAM+SPBM|AM|·|PA|+|BM|·|PB|,
又|AM|=|BM|=2,|PA|=|PB|, 所以S=2|PA|,     ﹍﹍﹍﹍﹍﹍﹍8分而|PA|=,  即S=2.
因此要求S的最小值,只需求|PM|的最小值即可,
即在直線(xiàn)3x+4y+8=0上找一點(diǎn)P,使得|PM|的值最小,﹍﹍﹍﹍﹍﹍﹍9分
所以|PM|min=3,                  ﹍﹍﹍﹍﹍﹍﹍10分
所以四邊形PAMB面積的最小值為S=2=2=2. ﹍﹍﹍12分
點(diǎn)評(píng):結(jié)合該試題的關(guān)鍵是理解圓心和半徑是求解圓的方程核心,同時(shí)直線(xiàn)與圓相切時(shí),構(gòu)成的四邊形的面積問(wèn)題,能否轉(zhuǎn)化為一條切線(xiàn)和一個(gè)半徑以及一個(gè)圓心到圓外一點(diǎn)P的三角形的面積的最值,最終化簡(jiǎn)為只需要求解切線(xiàn)長(zhǎng)|PA|的最小值即可。。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C的半徑為,圓心在直線(xiàn)上,且被直線(xiàn)截得的弦長(zhǎng)為,求圓C的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知從點(diǎn)發(fā)出的一束光線(xiàn),經(jīng)軸反射后,反射光線(xiàn)恰好平分圓:的圓周,則反射光線(xiàn)所在的直線(xiàn)方程為   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是圓的動(dòng)弦,且,則中點(diǎn)的軌跡方程是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)過(guò)點(diǎn)Q 作圓C:的切線(xiàn),切點(diǎn)為D,且QD=4.
(1)求的值;
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)點(diǎn)P作圓C的切線(xiàn)l,且l交x軸于點(diǎn)A,交y 軸于點(diǎn)B,設(shè),求的最小值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)在直角坐標(biāo)系xOy中,曲線(xiàn)C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線(xiàn)x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(1)求曲線(xiàn)C1的方程;
(2)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線(xiàn),分別與曲線(xiàn)C1相交于
點(diǎn)A,B和C,D.證明:當(dāng)P在直線(xiàn)x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,直線(xiàn)AB交x、y軸于點(diǎn),一圓心位于(0,3),半徑為3的動(dòng)圓沿x軸向右滾動(dòng),動(dòng)圓每6秒滾動(dòng)一圈,則動(dòng)圓與直線(xiàn)AB第一次相切時(shí)所用的時(shí)間為         秒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)點(diǎn)作直線(xiàn)與圓相交于兩點(diǎn),那么的最小值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓,過(guò)點(diǎn)的直線(xiàn),則的位置關(guān)系是___________(填“相交”、“相切”、“相離”或“三種位置關(guān)系均有可能”).

查看答案和解析>>

同步練習(xí)冊(cè)答案