【題目】已知函數(shù)f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)設(shè)m為整數(shù),且對于任意正整數(shù)n,(1+ )(1+ )…(1+ )<m,求m的最小值.

【答案】解:(Ⅰ)因?yàn)楹瘮?shù)f(x)=x﹣1﹣alnx,x>0,
所以f′(x)=1﹣ = ,且f(1)=0.
所以當(dāng)a≤0時(shí)f′(x)>0恒成立,此時(shí)y=f(x)在(0,+∞)上單調(diào)遞增,所以在(0,1)上f(x)<0,這與f(x)≥0矛盾;
當(dāng)a>0時(shí)令f′(x)=0,解得x=a,
所以y=f(x)在(0,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增,即f(x)min=f(a),
又因?yàn)閒(x)min=f(a)≥0,
所以a=1;
(Ⅱ)由(Ⅰ)可知當(dāng)a=1時(shí)f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,
所以ln(x+1)≤x當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),
所以ln(1+ )< ,k∈N*,
所以 ,k∈N*
一方面,因?yàn)? + +…+ =1﹣ <1,
所以,(1+ )(1+ )…(1+ )<e;
另一方面,(1+ )(1+ )…(1+ )>(1+ )(1+ )(1+ )= >2,
同時(shí)當(dāng)n≥3時(shí),(1+ )(1+ )…(1+ )∈(2,e).
因?yàn)閙為整數(shù),且對于任意正整數(shù)n(1+ )(1+ )…(1+ )<m,
所以m的最小值為3.
【解析】(Ⅰ)通過對函數(shù)f(x)=x﹣1﹣alnx(x>0)求導(dǎo),分a≤0、a>0兩種情況考慮導(dǎo)函數(shù)f′(x)與0的大小關(guān)系可得結(jié)論;
(Ⅱ)通過(Ⅰ)可知lnx≤x﹣1,進(jìn)而取特殊值可知ln(1+ )< ,k∈N* . 一方面利用等比數(shù)列的求和公式放縮可知(1+ )(1+ )…(1+ )<e;另一方面可知(1+ )(1+ )…(1+ )>2,且當(dāng)n≥3時(shí),(1+ )(1+ )…(1+ )∈(2,e).
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和等比數(shù)列的前n項(xiàng)和公式,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;前項(xiàng)和公式:才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì),某地區(qū)植被覆蓋面積公頃與當(dāng)?shù)貧鉁叵陆档亩葦?shù)之間呈線性相關(guān)關(guān)系,對應(yīng)數(shù)據(jù)如下:

公頃

20

40

60

80

3

4

4

5

請用最小二乘法求出y關(guān)于x的線性回歸方程;

根據(jù)中所求線性回歸方程,如果植被覆蓋面積為300公頃,那么下降的氣溫大約是多少?

參考公式:線性回歸方程;其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點(diǎn),點(diǎn)上,且軸.

(1)求的方程

(2)過的直線兩點(diǎn),交直線于點(diǎn).證明:直線的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(x+ ),則下列結(jié)論錯(cuò)誤的是( )
A.f(x)的一個(gè)周期為﹣2π
B.y=f(x)的圖象關(guān)于直線x= 對稱
C.f(x+π)的一個(gè)零點(diǎn)為x=
D.f(x)在( ,π)單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)設(shè)D為BC邊上一點(diǎn),且AD⊥AC,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , ,

1)若 的充分條件,求實(shí)數(shù) 的取值范圍;

(2)若 ,”為真命題,“”為假命題,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零點(diǎn),則a=( 。
A.﹣
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,分別是的中點(diǎn).

(1)證明:平面平面;

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為圓O的直徑,C在圓O上,CF⊥AB于F,點(diǎn)D為線段CF上任意一點(diǎn),延長AD交圓O于E,∠AEC=30°.
(1)求證:AF=FO;
(2)若CF= ,求ADAE的值.

查看答案和解析>>

同步練習(xí)冊答案