【題目】下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )
A.y=2x
B.y=
C.y=2
D.y=﹣x2
【答案】D
【解析】解:對(duì)于A,定義域?yàn)镽,函數(shù)單調(diào)增,非奇非偶,不滿足題意;
對(duì)于B,定義域?yàn)閇0,+∞),非奇非偶,不滿足題意;
對(duì)于C,定義域?yàn)閇0,+∞),非奇非偶,不滿足題意;
對(duì)于D,滿足f(﹣x)=f(x),函數(shù)為偶函數(shù),且在區(qū)間(0,+∞)上單調(diào)遞減,滿足題意,
故選D.
【考點(diǎn)精析】掌握函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時(shí)間的函數(shù)關(guān)系,下列說法中錯(cuò)誤的是( )
A.第3分時(shí)汽車的速度是40千米/時(shí)
B.第12分時(shí)汽車的速度是0千米/時(shí)
C.從第3分到第6分,汽車行駛了120千米
D.從第9分到第12分,汽車的速度從60千米/時(shí)減少到0千米/時(shí)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)若, 是直線與軸的交點(diǎn), 是圓上一動(dòng)點(diǎn),求的最大值;
(Ⅱ)若直線被圓截得的弦長(zhǎng)等于圓的半徑倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)若,求的單調(diào)區(qū)間;(Ⅱ)若有最大值3,求的值;(Ⅲ)若的值域是,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2|x﹣a|(a∈R).21世紀(jì)教育網(wǎng)
(1)判定f(x)的奇偶性,并說明理由;
(2)當(dāng)a≠0時(shí),是否存在一點(diǎn)M(t,0),使f(x)的圖象關(guān)于點(diǎn)M對(duì)稱,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集為實(shí)數(shù)集R,集合A={x|y= + },B={x|log2x>1}.
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:f(x)=lg(ax﹣bx)(a>1>b>0).
(1)求f(x)的定義域;
(2)判斷f(x)在其定義域內(nèi)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線與直線垂直,求的單調(diào)區(qū)間;
(2)求證: 恒成立的充要條件是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
設(shè)函數(shù)
(Ⅰ)若是函數(shù)的極值點(diǎn),1和是的兩個(gè)不同零點(diǎn),且
且,求的值;
(Ⅱ)若對(duì)任意, 都存在( 為自然對(duì)數(shù)的底數(shù)),使得
成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com