20.在直角坐標系xOy中,已知曲線${C_1}:\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t為參數(shù)),曲線${C_2}:\left\{{\begin{array}{l}{x=acosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù),a>1),若C1恰好經(jīng)過C2的焦點,則a的值為$\sqrt{5}$.

分析 求出曲線C1的普通方程為x2-y2=4,曲線C2的普通方程為$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1,a>1,由此能求出結(jié)果.

解答 解:∵曲線${C_1}:\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t為參數(shù)),曲線${C_2}:\left\{{\begin{array}{l}{x=acosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù),a>1),
∴曲線C1的普通方程為x2-y2=4,
曲線C2的普通方程為$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1,a>1,
∵C1恰好經(jīng)過C2的焦點($±\sqrt{{a}^{2}-1}$,0),
∴a2-1=4,解得a=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點評 本題考查實數(shù)值的求法,是中檔題,解題時要認真審題,注意參數(shù)方程、普通方程的互化及橢圓、雙曲線性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},則∁U(A∪B)中元素個數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果全集U={1,2,3,4,5},M={1,2,5},則∁UM=(  )
A.{1,2}B.{3,4}C.{5}D.{1,2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=loga$\frac{x-2a}{x+2a}$,g(x)=loga(x+2a)+loga(4a-x),其中a>0,且a≠1.
(1)求f(x)的定義域,并判斷f(x)的奇偶性;
(2)已知區(qū)間D=[2a+1,2a+$\frac{3}{2}$]滿足3a∉D,設(shè)函數(shù)h(x)=f(x)+g(x),h(x)的定義域為D,若對任意x∈D,不等式|h(x)|≤2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=(x2-3)ex(其中x∈R,e是自然對數(shù)的底數(shù)),當t1>0時,關(guān)于x的方程[f(x)-t1][f(x)-t2]=0恰好有5個實數(shù)根,則實數(shù)t2的取值范圍是(  )
A.(-2e,0)B.(-2e,0]C.[-2e,6e-3]D.(-2e,6e-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和${A_n}={n^2}({n∈{N^*}}),{b_n}=\frac{a_n}{{{a_{n+1}}}}+\frac{{{a_{n+1}}}}{a_n}({n∈{N^*}})$,數(shù)列{bn}的前n項和為Bn
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${c_n}=\frac{a_n}{2^n}({n∈{N^*}})$,求數(shù)列{cn}的前n項和Cn;
(3)證明:$2n<{B_n}<2n+2({n∈{N^*}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$a={log_3}0.5,b={log_{0.3}}0.2,c={0.5^{0.3}}$,則( 。
A.a>c>bB.b>c>aC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:x2-5x-6≤0,命題q:x2-2x+1-4a2≤0(a>0),若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若l,m是兩條不同的直線,α是一個平面,則下列命題正確的是( 。
A.若l∥α,m∥α,則l∥mB.若l⊥m,m?α,則l⊥αC.若l∥α,m?α,則l∥mD.若l⊥α,l∥m,則m⊥α

查看答案和解析>>

同步練習(xí)冊答案