10.設(shè)集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},則∁U(A∪B)中元素個數(shù)為( 。
A.4B.5C.6D.7

分析 根據(jù)已知中集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},結(jié)合集合并集,補(bǔ)集的定義,可得答案.

解答 解:∵A={2,5},B={1,2,4,5},
∴A∪B={1,2,4,5},
又∵集合U={n|n∈N*且n≤9}={1,2,3,4,5,6,7,8,9},
∴∁U(A∪B)={3,6,7,8,9},
故∁U(A∪B)共有5個元素,
故選:B.

點(diǎn)評 本題考查的知識點(diǎn)是集合的交集,并集,補(bǔ)集的混合運(yùn)算,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\sqrt{({{a^2}-1}){x^2}-({a-1})x+1}$的定義域是全體實(shí)數(shù),那么實(shí)數(shù)a的取值范圍是(-∞,-$\frac{5}{3}$]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知無窮數(shù)列{cn}滿足cn+1=|1-|1-2cn||.
(Ⅰ)若c1=$\frac{1}{7}$,寫出數(shù)列{cn}的前4項;
(Ⅱ)對于任意0<c1≤1,是否存在實(shí)數(shù)M,使數(shù)列{cn}中的所有項均不大于M?若存在,求M的最小值;若不存在,請說明理由;
(Ⅲ)當(dāng)c1為有理數(shù),且c1≥0時,若數(shù)列{cn}自某項后是周期數(shù)列,寫出c1的最大值.(直接寫出結(jié)果,無需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“-2<m<-$\frac{1}{3}$”是“方程$\frac{{x}^{2}}{m+3}$+$\frac{{y}^{2}}{2m+1}$表示雙曲線,且方程$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{2m-1}$表示交點(diǎn)在y軸上的橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一次函數(shù)y=-$\frac{m}{n}$x+$\frac{1}{n}$的圖象同時經(jīng)過第一、二、四象限的必要不充分條件是( 。
A.mn>0B.m>1,且n>1C.m>0,且n<0D.m>0,且n>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=log2x+x-4的零點(diǎn)在區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖所示,已知A,B是單位圓上兩點(diǎn)且|AB|=$\sqrt{3}$,設(shè)AB與x軸正半軸交于點(diǎn)C,α=∠AOC,β=∠OCB,則sinαsinβ+cosαcosβ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知α,β是兩個平面,m,n是兩條直線,則下列四個結(jié)論中,正確的有②③(填寫所有正確結(jié)論的編號)
①若m∥α,n∥α,則m∥n;
②若m⊥α,n∥α,則m⊥n;
③若a∥β,m?α,則m∥β;
④若m⊥n.m⊥α,n∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在直角坐標(biāo)系xOy中,已知曲線${C_1}:\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t為參數(shù)),曲線${C_2}:\left\{{\begin{array}{l}{x=acosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù),a>1),若C1恰好經(jīng)過C2的焦點(diǎn),則a的值為$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案