15.已知f(x)=(x2-3)ex(其中x∈R,e是自然對數(shù)的底數(shù)),當(dāng)t1>0時,關(guān)于x的方程[f(x)-t1][f(x)-t2]=0恰好有5個實數(shù)根,則實數(shù)t2的取值范圍是( 。
A.(-2e,0)B.(-2e,0]C.[-2e,6e-3]D.(-2e,6e-3

分析 求出f(x)的導(dǎo)數(shù),單調(diào)區(qū)間和極值,畫出f(x)的大致圖象,討論t1的范圍,確定t2的范圍,通過圖象即可得到所求范圍.

解答 解:f(x)=(x2-3)ex的導(dǎo)數(shù)為
f′(x)=(x2+2x-3)ex=(x-1)(x+3)ex,
當(dāng)-3<x<1時,f′(x)<0,f(x)遞減;
當(dāng)x>1或x<-3時,f′(x)>0,f(x)遞增.
可得f(x)的極小值為f(1)=-2e,極大值為f(-3)=6e-3
作出y=f(x)的圖象,如圖:
當(dāng)t1>0時,關(guān)于x的方程[f(x)-t1][f(x)-t2]=0
恰好有5個實數(shù)根,
即為f(x)=t1或f(x)=t2恰好有5個實數(shù)根,
若t1>6e-3,f(x)=t1只有一個實根,不合題意;
若0<t1<6e-3,f(x)=t1有三個實根,只要-2e<t2≤0,滿足題意;
若t1=6e-3,f(x)=t1有兩個實根,只要0<t2<6e-3,滿足題意;
綜上可得,t2的范圍是(-2e,6e-3).
故選:D.

點評 本題考查函數(shù)和方程的轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想方法運用,以及導(dǎo)數(shù)的運用:求單調(diào)區(qū)間和極值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一次函數(shù)y=-$\frac{m}{n}$x+$\frac{1}{n}$的圖象同時經(jīng)過第一、二、四象限的必要不充分條件是(  )
A.mn>0B.m>1,且n>1C.m>0,且n<0D.m>0,且n>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sin(π+α)=$\frac{1}{2}$,則cos(α-$\frac{3}{2}$π)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+2y-4≤0}\\{3x+y-3≥0}\\{x-y-1≤0}\end{array}}\right.$,則目標(biāo)函數(shù)z=x-2y的最小值為(  )
A.$-\frac{16}{5}$B.-3C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在直角坐標(biāo)系xOy中,已知曲線${C_1}:\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t為參數(shù)),曲線${C_2}:\left\{{\begin{array}{l}{x=acosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù),a>1),若C1恰好經(jīng)過C2的焦點,則a的值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-{x^2}+cx+d,({c,d∈R})$,函數(shù)f(x)的圖象記為曲線C.
(1)若函數(shù)f(x)在[0,+∞)上單調(diào)遞增,求c的取值范圍;
(2)若函數(shù)y=f(x)-m有兩個零點α,β(α≠β),且x=α為f(x)的極值點,求2α+β的值;
(3)設(shè)曲線C在動點A(x0,f(x0))處的切線l1與C交于另一點B,在點B處的切線為l2,兩切線的斜率分別為k1,k2,是否存在實數(shù)c,使得$\frac{k_1}{k_2}$為定值?若存在,求出c的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,△PCD為等邊三角形,底面ABCD為直角梯形,AB⊥AD,AD∥BC,AD=2BC=2,AB=$\sqrt{3}$,點E、F分別為AD、CD的中點.
(1)求證:直線BE∥平面PCD;
(2)求證:平面PAF⊥平面PCD;
(3)若PB=$\sqrt{3}$,求直線PB與平面PAF所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.Sn為數(shù)列{an}的前n項和,已知an>0,an2+an=2Sn
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{{a}_{n-1}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案