【題目】在平面直角坐標(biāo)系中,已知 為橢圓 的左焦點(diǎn),且橢圓過.
(Ⅰ)求橢圓的方程;
(Ⅱ) 是否存在平行四邊形 ,同時(shí)滿足下列兩個(gè)條件:
①點(diǎn)在直線上;②點(diǎn) 在橢圓上且直線 的斜率等于1.如果存在,求出點(diǎn)坐標(biāo);如果不存在,說明理由.
【答案】(Ⅰ).(Ⅱ)見解析.
【解析】試題分析:(1)根據(jù)c及橢圓過點(diǎn),即可求出a,b,寫出橢圓的標(biāo)準(zhǔn)方程;(2)假設(shè)存在,設(shè)直線的方程為,聯(lián)立橢圓方程后,可計(jì)算C點(diǎn)的縱坐標(biāo),又C點(diǎn)在橢圓上,根據(jù)橢圓范圍知,矛盾.
試題解析:
(Ⅰ)由題意得: 所以 ,橢圓的方程為.
(Ⅱ)不存在滿足題意的平行四邊形,
理由如下:
假設(shè)存在滿足題意的平行四邊形.
設(shè)直線的方程為,,,線段的中點(diǎn),點(diǎn).
由得.
由 ,解得
因?yàn)?, 所以 .
因?yàn)?四邊形為平行四邊形,所以 是的中點(diǎn).
所以 點(diǎn)的縱坐標(biāo).
因?yàn)?點(diǎn)在橢圓上,
所以 .這與矛盾.
所以 不存在滿足題意的平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年雙11當(dāng)天,某購(gòu)物平臺(tái)的銷售業(yè)績(jī)高達(dá)2135億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.
(1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品好評(píng) | 140 | ||
對(duì)商品不滿意 | 10 | ||
合計(jì) | 200 |
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為X.
①求隨機(jī)變量X的分布列;
②求X的數(shù)學(xué)期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線,,C與l有且僅有一個(gè)公共點(diǎn).
(Ⅰ)求a;
(Ⅱ)O為極點(diǎn),A,B為C上的兩點(diǎn),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進(jìn),到目前,中國(guó)擁有世界上最大的快遞市場(chǎng).某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)10元;重量超過的包裹,除收費(fèi)10元之外,每超過(不足,按計(jì)算)需再收5元.
該公司將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位:) | 1 | 2 | 3 | 4 | 5 |
包裹件數(shù) | 43 | 30 | 15 | 8 | 4 |
公司對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件數(shù)(近似處理) | 50 | 150 | 250 | 350 | 450 |
天數(shù) | 6 | 6 | 30 | 12 | 6 |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來5天內(nèi)恰有2天攬件數(shù)在101~300之間的概率;
(2)①估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
②根據(jù)以往的經(jīng)驗(yàn),公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員3人,每人每件攬件不超過150件,日工資100元.公司正在考慮是否將前臺(tái)工作人員裁減1人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,若你是公司老總,是否進(jìn)行裁減工作人員1人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為常數(shù),函數(shù),給出以下結(jié)論:
(1)若,則存在唯一零點(diǎn)
(2)若,則
(3)若有兩個(gè)極值點(diǎn),則
其中正確結(jié)論的個(gè)數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在九年級(jí)上學(xué)期開始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到頻率分布直方圖(如圖),且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個(gè)數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(1)請(qǐng)估計(jì)學(xué)生的跳繩個(gè)數(shù)的眾數(shù)和平均數(shù)(保留整數(shù));
(2)若從跳繩個(gè)數(shù)在,兩組中按分層抽樣的方法抽取9人參加正式測(cè)試,并從中任意選取2人,求2人得分之和不大于34分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,是的中點(diǎn),點(diǎn)在線段上,且.若將 分別沿折起,使兩點(diǎn)重合于點(diǎn),如圖2.
圖1 圖2
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】輪船A從某港口O要將一些物品送到正航行的輪船B上,在輪船A出發(fā)時(shí),輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以15海里/時(shí)的航速沿正東方向勻速行駛,假設(shè)輪船A沿直線方向以v海里/時(shí)的航速勻速行駛,經(jīng)過t小時(shí)與輪船B相遇,
(1)若使相遇時(shí)輪船A航距最短,則輪船A的航行速度的大小應(yīng)為多少?
(2)假設(shè)輪船B的航行速度為30海里/時(shí),輪船A的最高航速只能達(dá)到30海里/時(shí),則輪船A以多大速度及沿什么航行方向行駛才能在最短時(shí)間內(nèi)與輪船B相遇,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com