【題目】已知,,.
(1)解關(guān)于的方程;
(2)設(shè),時(shí),對(duì)任意,總有成立,求的取值范圍.
【答案】(1)見解析;(2).
【解析】
(1)利用換元法得到含參數(shù)的一元二次方程,再對(duì)分類討論,分析方程解的情況;
(2)題中任意,總有可以看作區(qū)間內(nèi)函數(shù)最大值與函數(shù)最小值的差值問題,然后對(duì)參數(shù)進(jìn)行分類討論,確定函數(shù)在區(qū)間上的單調(diào)性,從而確定函數(shù)在區(qū)間上的最值,再根據(jù)不等式求出參數(shù)的取值范圍.
(1)由題知,
代入有,
整理得,
令,,
即,,
當(dāng)時(shí),方程無解,
當(dāng)時(shí),方程有一個(gè)解,解得,
當(dāng)時(shí),方程有兩個(gè)解,
,
,
當(dāng)時(shí),方程僅有一個(gè)根,
;
(2),代入,
有,
令,,設(shè),
①當(dāng)時(shí),易知函數(shù)在區(qū)間單調(diào)遞增,
又因?yàn)?/span>,
即,
解得,舍去,
②當(dāng)時(shí),函數(shù)在處取最小值,
當(dāng)時(shí),,
即函數(shù)在區(qū)間單調(diào)遞增,
又因?yàn)?/span>,
即,
解得,
所以,
當(dāng)時(shí),,
即函數(shù)在區(qū)間單調(diào)遞減,
在區(qū)間單調(diào)遞增,
又因?yàn)?/span>,
即,
因?yàn)楫?dāng)時(shí),恒成立,
所以,
綜上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P為橢圓C上一點(diǎn),且PF2垂直于x軸,連結(jié)PF1并延長交橢圓于另一點(diǎn)Q,設(shè)=λ.
(1)若點(diǎn)P的坐標(biāo)為(2,3),求橢圓C的方程及λ的值;
(2)若4≤λ≤5,求橢圓C的離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)的直線與中心在原點(diǎn),焦點(diǎn)在軸上且離心率為的橢圓相交于、兩點(diǎn),直線過線段的中點(diǎn),同時(shí)橢圓上存在一點(diǎn)與右焦點(diǎn)關(guān)于直線對(duì)稱.
(1)求直線的方程;
(2)求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an=logn+1(n+2)(n∈N*)定義使a1a2…ak為整數(shù)的數(shù)k叫做企盼數(shù),則區(qū)間[1,2019]內(nèi)所有的企盼數(shù)的和是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.是自然對(duì)數(shù)的底數(shù).
(1)若曲線在處的切線方程為.求實(shí)數(shù)的值;
(2)① 若時(shí),函數(shù)既有極大值,又有極小值,求實(shí)數(shù)的取值范圍;
② 若,.若對(duì)一切正實(shí)數(shù)恒成立,求實(shí)數(shù)的最大值(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)正方形花圃被分成5份.
(1)若給這5個(gè)部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍(lán)、綠4種顏色不同的花,求有多少種不同的種植方法?
(2)若向這5個(gè)部分放入7個(gè)不同的盆栽,要求每個(gè)部分都有盆栽,問有多少種不同的放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點(diǎn)P到底面ABCD的距離為2,E是線段PD上一點(diǎn),且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】考慮某長方體的三個(gè)兩兩相鄰的面上的三條對(duì)角線及體對(duì)角線(共四條線段),則正確的命題是( )
A. 必有某三條線段不能組成一個(gè)三角形的三邊
B. 任何三條線段都可組成三角形,其每個(gè)內(nèi)角都是銳角
C. 任何三條線段都可組成三角形,其中必有一個(gè)是鈍角三角形
D. 任何三條線段都可組成三角形,其形狀是“銳角的”或是“非銳角的”,隨長方體的長、寬、高而變化,不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com