已知點(diǎn)A(-2,0),B(2,0),C(0,3),則△ABC底邊AB的中線的方程是( 。
A、x=0
B、x=0(0≤y≤3)
C、y=0
D、y=0(0≤x≤2)
考點(diǎn):中點(diǎn)坐標(biāo)公式,直線的兩點(diǎn)式方程
專題:直線與圓
分析:先求出AB的中點(diǎn)為(0,0),由此能求出△ABC底邊AB的中線的方程.
解答: 解:∵點(diǎn)A(-2,0),B(2,0),C(0,3),
∴AB的中點(diǎn)為(0,0),
∴△ABC底邊AB的中線的方程為x=0(0≤y≤3).
故選:B.
點(diǎn)評(píng):本題考查直線方程的求法,解題時(shí)要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
20
-
y2
5
=1的焦距是( 。
A、
15
B、2
15
C、5
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合 A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A}則B中所含元素的個(gè)數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A={1,2},集合B={2,3},則 A∪B=(  )
A、{1,2,2,3}
B、{2}
C、{1,2,3}
D、{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,且雙曲線C1
x2
a2
-
y2
b2
=1與橢圓C:
x2
a2
+
y2
b2
=2有共同的焦點(diǎn),則雙曲線C1的離心率為 ( 。
A、
2
B、2
C、
2
3
3
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
與向量
b
滿足|
a
|=1,|
b
|=2,
a
⊥(
b
-
a
),則
a
b
的夾角是(  )
A、
π
6
B、
π
4
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論錯(cuò)誤的是( 。
A、命題:“若x2-3x+2=0,則x=2”的逆否命題為:“若x≠2,則x2-3x+2≠0”
B、若p且q為假命題,則p、q均為假命題
C、“ac2>bc2”是“a>b”的充分不必要條件
D、命題:“存在x為實(shí)數(shù),x2-x>0”的否定是“任意x是實(shí)數(shù),x2-x≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)在一個(gè)周期內(nèi)的圖象如圖所示,M是這段圖象的最高點(diǎn),則φ=( 。
A、
π
3
B、
π
4
C、
π
6
D、
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈(0,2)直線l1:ax-2y-2a+4=0與直線l2:2x+a2y-2a2-4=0與坐標(biāo)軸圍成一個(gè)四邊形,求此四邊形面積的最小值?

查看答案和解析>>

同步練習(xí)冊(cè)答案