【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求∠AOB的值.

【答案】
(1)解:直線l的參數(shù)方程為 (t為參數(shù)),

即為 ,消去t,可得直線l的普通方程為 x+y+4=0;

曲線C的極坐標(biāo)方程為:ρ2﹣3ρ﹣4=0(ρ≥0).即為ρ=4,(﹣1舍去),

由x2+y22,x=ρcosθ,y=ρsinθ,可得x2+y2=16


(2)解:圓C的圓心為(0,0),半徑r=4,

C到直線的距離為d= =2,

|AB|=2 =2 =4 ,

由余弦定理可得cos∠AOB= = =﹣

可得


【解析】(1)運(yùn)用特殊角的三角函數(shù)值及代入法,可得直線l的普通方程;解得ρ=4,由x2+y22 , 可得曲線C的直角坐標(biāo)方程;(2)求得圓心到直線的距離,弦長AB,由余弦定理,計(jì)算即可得到所求∠AOB的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 是奇函數(shù) )的導(dǎo)函數(shù), ,當(dāng) 時(shí), 則使得 成立的 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題 :關(guān)于 的不等式 對(duì)一切 恒成立,命題 :指數(shù)函數(shù) 是增函數(shù),若 為真、 為假,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線 的極坐標(biāo)方程為 ,直線 的參數(shù)方程為
為參數(shù), 為直線的傾斜角).
(1)寫出直線 的普通方程和曲線 的直角坐標(biāo)方程;
(2)若直線 與曲線 有唯一的公共點(diǎn),求角 的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知等差數(shù)列, .

(1)求數(shù)列的通項(xiàng)公式;

(2)記數(shù)列的前項(xiàng)和為,求;

(3)是否存在正整數(shù),使得仍為數(shù)列中的項(xiàng),若存在,求出所有滿足的正整數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)|a|≤1,|x|≤1時(shí),關(guān)于x的不等式|x2﹣ax﹣a2|≤m恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.[ , +∞)
B.[ , +∞)
C.[ , +∞)
D.[ , +∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在[0,1]上的函數(shù)f(x)滿足:
①f(0)=f(1)=0;
②對(duì)所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若對(duì)所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,則m的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)定義域分別是、的函數(shù),一個(gè)函數(shù).

(Ⅰ),寫出函數(shù)的解析式

(Ⅱ)(Ⅰ)的條件下,恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)當(dāng)時(shí),若函數(shù)有四個(gè)零點(diǎn),分別為,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在 中, 分別是角 的對(duì)邊,且 ,若 ,則 的面積為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案