(本小題滿(mǎn)分12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,點(diǎn)分別是橢圓的左、右焦點(diǎn),在直線(xiàn)(分別為橢圓的長(zhǎng)半軸和半焦距的長(zhǎng))上的點(diǎn)
,滿(mǎn)足線(xiàn)段的中垂線(xiàn)過(guò)點(diǎn).過(guò)原點(diǎn)且斜率均存在的直線(xiàn)、互相垂直,且截橢圓所得的弦長(zhǎng)分別為、
(Ⅰ)求橢圓的方程;
(Ⅱ)求的最小值及取得最小值時(shí)直線(xiàn)、的方程.
解:(Ⅰ)設(shè)橢圓C的方程為半焦距為,依題意有所以, ………3分
解得,所以, 
所以,所求橢圓方程為………5分
(Ⅱ)設(shè),則
直線(xiàn)與橢圓聯(lián)立得:
所以,,………7分
同理可得:所以,  ………8分
所以,
………10分
當(dāng)僅當(dāng)時(shí)取最小值,此時(shí)兩直線(xiàn)的方程分別為………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線(xiàn):,點(diǎn)在直線(xiàn)上移動(dòng),是線(xiàn)段軸的交點(diǎn),
(I)求動(dòng)點(diǎn)的軌跡的方程;
(II)設(shè)圓過(guò),且圓心在曲線(xiàn)上, 設(shè)圓過(guò),且圓心在曲線(xiàn) 上,是圓軸上截得的弦,當(dāng)運(yùn)動(dòng)時(shí)弦長(zhǎng)是否為定值?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)設(shè)橢圓的左、右焦點(diǎn)分別為F1
F2,直線(xiàn)過(guò)橢圓的一個(gè)焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長(zhǎng)為。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過(guò)伸縮變換變成曲線(xiàn),直線(xiàn)與曲線(xiàn)相切
且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍且經(jīng)過(guò)點(diǎn)M
(Ⅰ)求橢圓C的方程
(Ⅱ)過(guò)圓上的任一點(diǎn)作圓的一條切線(xiàn)交橢圓C與A、B兩點(diǎn)
①求證:
②求|AB|的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦點(diǎn),點(diǎn)P在橢圓上,如果線(xiàn)段的中點(diǎn)在
上,那么的值為(  )
A.7 :1B.5 :1C.9 :2D.8 :3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)已知點(diǎn),過(guò)點(diǎn)作拋物線(xiàn)的切線(xiàn),切點(diǎn)在第二象限,如圖.
(Ⅰ)求切點(diǎn)的縱坐標(biāo);
(Ⅱ)若離心率為的橢圓 恰好經(jīng)過(guò)切點(diǎn),設(shè)切線(xiàn)交橢圓的另一點(diǎn)為,記切線(xiàn)的斜率分別為,若,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)(注意:在試題卷上作答無(wú)效)
已知的頂點(diǎn)A在射線(xiàn)上,兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),0為坐標(biāo)原點(diǎn),
且線(xiàn)段AB上有一點(diǎn)M滿(mǎn)足當(dāng)點(diǎn)A在上移動(dòng)時(shí),記點(diǎn)M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)是否存在過(guò)的直線(xiàn)與W相交于P,Q兩點(diǎn),使得若存在,
求出直線(xiàn);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)閱讀下列材料,解決數(shù)學(xué)問(wèn)題.圓錐曲線(xiàn)具有非常漂亮的光學(xué)性質(zhì),被人們廣泛地應(yīng)用于各種設(shè)計(jì)之中,比如橢圓鏡面用來(lái)制作電影放映機(jī)的聚光燈,拋物面用來(lái)制作探照燈等,它們的截面分別是橢圓和拋物線(xiàn).雙曲線(xiàn)也具有非常好的光學(xué)性質(zhì),從雙曲線(xiàn)的一個(gè)焦點(diǎn)發(fā)出的光線(xiàn),經(jīng)過(guò)雙曲線(xiàn)反射后,反射光線(xiàn)是發(fā)散的,它們好像是從另一個(gè)焦點(diǎn)射出的一樣,如圖(1)所示.反比例函數(shù)的圖像是以直線(xiàn)為軸,以坐標(biāo)軸為漸近線(xiàn)的等軸雙曲線(xiàn),記作C.
(Ⅰ)求曲線(xiàn)C的離心率及焦點(diǎn)坐標(biāo);
(Ⅱ)如圖(2),從曲線(xiàn)C的焦點(diǎn)F處發(fā)出的光線(xiàn)經(jīng)雙曲線(xiàn)反射后得到的反射光線(xiàn)與入射光線(xiàn)垂直,求入射光線(xiàn)的方程.
(1)          (2) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
設(shè),點(diǎn)的坐標(biāo)為(1,1),點(diǎn)在拋物線(xiàn)上運(yùn)動(dòng),點(diǎn)滿(mǎn)足,經(jīng)過(guò)點(diǎn)與軸垂直的直線(xiàn)交拋物線(xiàn)于點(diǎn),點(diǎn)滿(mǎn)足,求點(diǎn)的軌跡方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案