【題目】已知定義在R上的函數f(x)=2x-.
(Ⅰ)若f(x)=,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數m的取值范圍.
【答案】(1)x=1 (2)[-5,+∞)
【解析】試題分析:(1)先根據絕對值定義分類求解方程,注意2x與互為倒數 (2)利用平方差公式將不等式化簡并分離得m≥-(22t+1),最后根據求-(22t+1)最大值,得實數m的取值范圍.
試題解析:解:(Ⅰ)當x<0時,f(x)=0,無解;
當x≥0時,f(x)=2x-,
由2x-=,
得2·22x-3·2x-2=0,
將上式看成關于2x的一元二次方程,
解得2x=2或2x=-,
∵2x>0,∴x=1
(Ⅱ)當t∈[1,2]時,2t+m≥0,
即m(22t-1)≥-(24t-1),∵22t-1>0,
∴m≥-(22t+1),
∵t∈[1,2],∴-(22t+1)∈[-17,-5],
故實數m的取值范圍是[-5,+∞).
科目:高中數學 來源: 題型:
【題目】函數f(x)= 是定義在(﹣∞,+∞)上的奇函數,且f( )= .
(1)求實數a、b,并確定函數f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調性,并用定義證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),設h(x)=f(x)﹣g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果函數f(x)對其定義域內的兩個實數x1、x2 , 都滿足不等式 ,則稱函數f(x)在其定義域內具有性質M.給出下列函數:① ;②y=x2;③y=2x;④y=log2x.其中具有性質M的是( )
A.①④
B.②③
C.③④
D.①②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側棱,D、E分別是與的中點,點E在平面ABD上的射影是的重心
(Ⅰ)求與平面ABD所成角的余弦值
(Ⅱ)求點到平面的距離
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com