【題目】如圖是某電視臺(tái)主辦的歌手大獎(jiǎng)賽上七位評(píng)委為甲、乙兩名選手打出的分?jǐn)?shù)的莖葉圖(其中為數(shù)字0~9中的一個(gè)),則下列結(jié)論中正確的是( )

A. 甲選手的平均分有可能和乙選手的平均分相等

B. 甲選手的平均分有可能比乙選手的平均分高

C. 甲選手所有得分的中位數(shù)比乙選手所有得分的中位數(shù)低

D. 甲選手所有得分的眾數(shù)比乙選手所有得分的眾數(shù)高

【答案】D

【解析】

利用莖葉圖的定義表示數(shù)據(jù)即可.結(jié)合中位數(shù)和平均數(shù)、眾數(shù)的定義和公式進(jìn)行計(jì)算即可.

甲、乙兩位選手每個(gè)莖上的葉的數(shù)目相同,

乙的所有葉上的數(shù)字之和是37,

甲的所有葉上的數(shù)字之和是,

則甲選手的平均分一定比乙選手低;則A、B均不正確.

甲選手所有得分的中位數(shù)和眾數(shù)均為85,

乙選手所有得分的中位數(shù)和眾數(shù)均為84,

則C不正確且D正確.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一調(diào)查機(jī)構(gòu)針對(duì)該市市場占有率最高的甲、乙兩家網(wǎng)絡(luò)外賣企業(yè)以下簡稱外賣甲,外賣乙的經(jīng)營情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:

日期

第1天

第2天

第3天

第4天

第5天

外賣甲日接單x(百單

5

2

9

8

11

外賣乙日接單y(百單

2.2

2.3

10

5

15

(Ⅰ)據(jù)統(tǒng)計(jì)表明,yx之間具有線性相關(guān)關(guān)系.經(jīng)計(jì)算求得yx之間的回歸方程為,假定每單外賣業(yè)務(wù)企業(yè)平均能獲純利潤3元,試預(yù)測當(dāng)外賣乙日接單量不低于2500單時(shí),外賣甲所獲取的日純利潤的大致范圍;(x值精確到0.01)

(Ⅱ)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經(jīng)營狀況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足.

(1)求的通項(xiàng)公式;

(2)設(shè)等比數(shù)列滿足,問: 與數(shù)列的第幾項(xiàng)相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面平面為線段上一點(diǎn),, 的中點(diǎn).

(1)證明:平面;

(2)求三棱錐C-BMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產(chǎn)的次品數(shù)/件

0

1

2

3

4

對(duì)應(yīng)的天數(shù)/天

40

20

20

10

10

乙每天生產(chǎn)的次品數(shù)/件

0

1

2

3

對(duì)應(yīng)的天數(shù)/天

30

25

25

20

(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出的函數(shù)關(guān)系式;

(2)按這100天統(tǒng)計(jì)的數(shù)據(jù),分別求甲、乙兩名工人的平均日利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在等比數(shù)列{an}中,a1=2,且a1,a2,a3-2成等差數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.

(1)求復(fù)數(shù)

(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇質(zhì)數(shù),是小于的正整數(shù).證明:的充分必要條件是,對(duì)任何小于的正整數(shù),均有等于正奇數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案