【題目】如圖,四棱錐的底面是正方形,側棱底面, , 是的中點.
(1)求二面角的平面角的余弦值;
(2)在被上是否存在點,使平面?證明你的結論.
【答案】(1);(2)見解析.
【解析】試題分析:(1)建立空間直角坐標系,分別求出兩個平面的法向量,利用向量的有關運算計算出兩個向量的夾角,進而得到二面角平面角的余弦值;(2)假設存在點,則直線所在的向量與平面的法向量平行,根據(jù)這個條件可得到一個方程,再根據(jù)有關知識判斷方程的解的情況.
試題解析:以為坐標原點,分別以, , 所在直線為軸、軸、軸建立空間直角坐標系,
則, , , ,
所以, , .
(1)設是平面的一個法向量,
則由,得;取,則,
又是平面的一個法向量.設二面角的平面角為,
,二面角為鈍角,余弦值為.
(2), , , .
假設棱上存在點,使平面,設,( ),
則, ,
由得 , ,此時,
即在棱上存在點, ,使得平面.
科目:高中數(shù)學 來源: 題型:
【題目】設關于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=的a的值,并求此時函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)
(1)求函數(shù)g(x)的極大值;
(2)求證:1+++…+>ln(n+1)(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(),將的圖象向左平移個單位長度后得到的圖象,且在區(qū)間內的最大值為.
(1)求實數(shù)的值;
(2)在中,內角, , 的對邊分別是, , ,若,且,求的周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(),,.
(1)求函數(shù)的單調區(qū)間;
(2)當時,的兩個極值點為,().
①證明:;
②若,恰為的零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產品的廣告費支出與銷售額(單位:萬元)之間有如下對應數(shù)據(jù):
(1)求回歸直線方程;
(2)試預測廣告費支出為萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過的概率.(參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績.
(1)現(xiàn)從甲班數(shù)學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;
(2)學校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
span>2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)接到生產3000臺某產品的A,B,C三種部件的訂單,每臺產品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個工人每天可生產A部件6件,或B部件3件,或C部件2件.該企業(yè)計劃安排200名工人分成三組分別生產這三種部件,生產B部件的人數(shù)與生產A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).
(1)設生產A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產需要的時間;
(2)假設這三種部件的生產同時開工,試確定正整數(shù)k的值,使完成訂單任務的時間最短,并給出時間最短時具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,圓.
(1)若過點的圓的切線只有一條,求的值及切線方程;
(2)若過點且在兩坐標軸上截距相等的直線與圓相切,求的值及切線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com