2.0722.7063.8415.0246.6357.87910.828">
【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
span>2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
【答案】(1);(2)列聯(lián)表見解析,有的把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān).
【解析】
試題分析:(1)甲班數(shù)學(xué)成績(jī)不低于分的同學(xué)有個(gè),其中分?jǐn)?shù)不是的同學(xué)不妨記為,,,分?jǐn)?shù)為的同學(xué)不妨記為,,寫出從位同學(xué)任選名所有共個(gè)基本事件,其中事件“成績(jī)?yōu)?/span>分的同學(xué)至少有一名被抽中”包含了個(gè)基本事件,從而求得成績(jī)?yōu)?/span>分的同學(xué)至少有一名被抽中的概率;(2)根據(jù)所給數(shù)據(jù)填入表格,利用公式求得的值,從而得出結(jié)論.
試題解析:(1)甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)有5個(gè),其中分?jǐn)?shù)不是87的同學(xué)不妨記為,,,分?jǐn)?shù)為的同學(xué)不妨記為,;
從5位同學(xué)任選2名共有,,,,,,,,,10個(gè)基本事件.
事件“成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中”包含了7個(gè)基本事件,
所以(成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中).
(2)
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | 6 | 14 | 20 |
不優(yōu)秀 | 14 | 6 | 20 |
合計(jì) | 20 | 20 | 40 |
,
∵,
∴在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)(我們有的把握認(rèn)為成績(jī)優(yōu)秀教學(xué)方式有關(guān)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4,且位于x軸上方的點(diǎn),A到拋物線準(zhǔn)線的距離等于5,過(guò)A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M.
(1)求拋物線的方程;
(2)以M為圓心,MB為半徑作圓M,當(dāng)K(m,0)是x軸上一動(dòng)點(diǎn)時(shí),討論直線AK與圓M的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)在上的最小值;
(2)對(duì)一切,恒成立,求實(shí)數(shù)的取值范圍;
(3)探討函數(shù)是否存在零點(diǎn)?若存在,求出函數(shù)的零點(diǎn);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是正方形,側(cè)棱底面, , 是的中點(diǎn).
(1)求二面角的平面角的余弦值;
(2)在被上是否存在點(diǎn),使平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一盒中放有的黑球和白球,其中黑球4個(gè),白球5個(gè).
(1)從盒中同時(shí)摸出兩個(gè)球,求兩球顏色恰好相同的概率.
(2)從盒中摸出一個(gè)球,放回后再摸出一個(gè)球,求兩球顏色恰好不同的概率.
(3)從盒中不放回的每次摸一球,若取到白球則停止摸球,求取到第三次時(shí)停止摸球的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2S△ABC=·.
(1)求角B的大。
(2)若b=2,求a+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東亞運(yùn)動(dòng)會(huì)將于2013年10月6日在天津舉行.為了搞好接待工作,組委會(huì)打算學(xué)習(xí)北京奧運(yùn)會(huì)招募大量志愿者的經(jīng)驗(yàn),在某學(xué)院招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男女志愿者中分別有10人和6人喜愛運(yùn)動(dòng),其余人不喜歡運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜愛運(yùn)動(dòng) | 不喜愛運(yùn)動(dòng) | 總計(jì) | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計(jì) | 30 |
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與喜愛運(yùn)動(dòng)有關(guān)?
(3)如果從喜歡運(yùn)動(dòng)的女志愿者中(其中恰有4人會(huì)外語(yǔ)),抽取2名負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2=,其中
n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)如今,“網(wǎng)購(gòu)”一詞不再新鮮,越來(lái)越多的人已經(jīng)接受并喜歡了這種購(gòu)物方式,但隨之也出現(xiàn)了商品質(zhì)量不能保證與信譽(yù)不好等問題,因此,相關(guān)管理部門制定了針對(duì)商品質(zhì)量與服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出成功交易200例,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì):對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)依據(jù)題中的數(shù)據(jù)完成下表:
(2)通過(guò)計(jì)算說(shuō)明,能否有99.9%的把握認(rèn)為“商品好評(píng)與服務(wù)好評(píng)”有關(guān);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
(1)求證:EG⊥DF;
(2)求BE與平面EFGH所成角的正弦值.
查看答案和解析>>