7.已知集合A={x|0<x<2},B={x|x2-1>0},那么A∩B=( 。
A.{x|0<x<1}B.{x|1<x<2}C.{x|-1<x<0}D.{x|-1<x<2}

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:由B中不等式變形得:(x+1)(x-1)>0,
解得:x<-1或x>1,即B={x|x<-1或x>1},
∵A={x|0<x<2},
∴A∩B={x|1<x<2},
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四個函數(shù)中,在其定義域上既是奇函數(shù)又是單調(diào)遞增函數(shù)的是( 。
A.y=exB.y=log2xC.y=sinxD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)$f(x)=sin(ωπx-\frac{π}{6})(ω>0)$的最小正周期為$\frac{1}{5}$,則$f(\frac{1}{3})$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l:x=t與橢圓C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1相交于A,B兩點,M是橢圓C上一點
(Ⅰ)當(dāng)t=1時,求△MAB面積的最大值;
(Ⅱ)設(shè)直線MA和MB與x軸分別相交于點E,F(xiàn),O為原點.證明:|OE|•|OF|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,已知平面α⊥β,α∩β=l,A,B是直線l上的兩點,C,D是平面β內(nèi)的兩點,且 DA⊥l,CB⊥l,DA=2,AB=4,CB=4,P是平面α上的一動點,且直線 PD,PC與平面α所成角相等,則二面角 P-BC-D的余弦值的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,AD∥BC,∠BAD=90°,PA=PD,AB⊥PA,AD=2,AB=BC=1
(Ⅰ)求證:AB⊥PD
(Ⅱ)若E為PD的中點,求證:CE∥平面PAB
(Ⅲ)設(shè)平面PAB∩平面PCD=PM,點M在平面ABCD上.當(dāng)PA⊥PD時,求PM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過點(2,1)且與點(1,3)距離最大的直線方程是x-2y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|$\sqrt{2x-1}$>1},則∁RA=( 。
A.{x|x>1}B.{x|x≥$\frac{1}{2}$}C.{x|x≤1}D.{x|x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.與直線 $y=\frac{1}{2}x+1$垂直,且過(2,0)點的直線方程是(  )
A.y=-2x+4B.$y=\frac{1}{2}x-1$C.y=-2x-4D.$y=\frac{1}{2}x-4$

查看答案和解析>>

同步練習(xí)冊答案