16.與直線 $y=\frac{1}{2}x+1$垂直,且過(2,0)點(diǎn)的直線方程是( 。
A.y=-2x+4B.$y=\frac{1}{2}x-1$C.y=-2x-4D.$y=\frac{1}{2}x-4$

分析 由題意,設(shè)直線方程為y=-2x+b,代入(2,0),可得b,即可求出直線方程.

解答 解:由題意,設(shè)直線方程為y=-2x+b,
代入(2,0),可得b=4,
∴所求直線方程為y=-2x+4.
故選:A.

點(diǎn)評 本題考查直線方程,考查直線與直線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|0<x<2},B={x|x2-1>0},那么A∩B=(  )
A.{x|0<x<1}B.{x|1<x<2}C.{x|-1<x<0}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若橢圓$\frac{{x}^{2}}{5}$+y2=1的左、右焦點(diǎn)恰好是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1的左、右頂點(diǎn),則雙曲線的離心率為(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn).過點(diǎn)A1,D1,E的平面α與此長方體的面相交,交線圍成一個(gè)四邊形.
(Ⅰ)請?jiān)趫D中作出此四邊形(簡要說明畫法);
(Ⅱ)證明AE⊥平面α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.有下列四個(gè)命題:
①“若xy=1,則x、y互為倒數(shù)”的逆命題;
②“相似三角形的周長相等”的否命題;
③“若b≤-1,則方程x2-2bx+b2+b=0有實(shí)根”的逆否命題;
④若“A∪B=B,則A=B”的逆否命題.
其中的真命題是( 。
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C所對的邊分別為a,b,c.函數(shù)f(x)=sin(2x+A).
(1)若$A=\frac{π}{2}$,則$f(-\frac{π}{6})$的值為$\frac{1}{2}$;
(2)若$f(\frac{π}{12})=1$,a=3,$cosB=\frac{4}{5}$,求△ABC的邊b的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q(q>0),所有項(xiàng)和為1,則首項(xiàng)a1的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè){an}是等差數(shù)列,a1+a3+a5=9,a1=9.則這個(gè)數(shù)列的公差等于( 。
A.1B.2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.我們國家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了了解老人們的健康狀況,政府從老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個(gè)等級,并以80歲為界限分成兩個(gè)群體進(jìn)行統(tǒng)計(jì),樣本分布被制作成如下圖表:

(Ⅰ)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?
(Ⅱ)估算該市80歲及以上長者占全市戶籍人口的百分比;
(Ⅲ)政府計(jì)劃為80歲及以上長者或生活不能自理的老人每人購買1000元/年的醫(yī)療保險(xiǎn),為其余老人每人購買600元/年的醫(yī)療保險(xiǎn),不可重復(fù)享受,試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.

查看答案和解析>>

同步練習(xí)冊答案