設(shè)數(shù)列{an}的前n項和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b1(a2-a1)=b2.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=an
bn,求數(shù)列{cn}的前n項和Tn.
(1)an=4n-2,bn=b1qn-1=2.4n-1
(2)Tn=[(6n-5)4n+5]
【解析】
試題分析:解析: (1)當n≥2時,
an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
當n=1時,a1=S1=2滿足上式,
故{an}的通項式為an=4n-2. -2分
設(shè){bn}的公比為q,由已知條件b1(a2-a1)=b2知,b1=2,b2=8,所以q=4,
∴bn=b1qn-1=2.4n-1 5分
(2)∵cn=(2n-1)4n-1,
∴Tn=c1+c2+…+cn=[1+3×41+5×42+…+(2n-1)4n-1].
4Tn=[1×4+3×42+5×42+…+(2n-3)4n-1+(2n-1)4n].
兩式相減得:
3Tn=-1-2(41+42+43+…+4n-1)+(2n-1)4n
=[(6n-5)4n+5].
∴Tn=[(6n-5)4n+5]. 12分
考點:等差數(shù)列和等比數(shù)列
點評:主要是考查了等差數(shù)列和等比數(shù)列的通項公式以及數(shù)列的求和 綜合運用,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
1 |
2 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
10 |
9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
Sn |
5•2n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com