如圖,已知棱柱的底面是菱形,且面,,,為棱的中點,為線段的中點,
(Ⅰ)求證: 面;
(Ⅱ)判斷直線與平面的位置關系,并證明你的結(jié)論;
(Ⅲ)求三棱錐的體積.
(Ⅰ)證明:連結(jié)、交于點,再連結(jié),
可得且,四邊形是平行四邊形,由,平面.
(Ⅱ)平面
(Ⅲ).
解析試題分析:(Ⅰ)證明:連結(jié)、交于點,再連結(jié),
,且, 又,故且,
四邊形是平行四邊形,故,平面 4分
(Ⅱ)平面,下面加以證明:
在底面菱形中,
又平面,面
,平面,
,平面 8分
(Ⅲ)過點作,垂足,平面,平面
,平面,
在中,,,故,
12分
考點:本題主要考查立體幾何中的平行關系、垂直關系,體積計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問題的一個基本思路。注意運用轉(zhuǎn)化與化歸思想,將空間問題轉(zhuǎn)化成平面問題。本題含“探究性問題”,這一借助于幾何體中的垂直關系。
科目:高中數(shù)學 來源: 題型:解答題
已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動點.
(1)求四棱錐P-ABCD的體積;
(2)是否不論點E在何位置,都有BD⊥AE?證明你的結(jié)論;
(3)若點E為PC的中點,求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在底面是直角梯形的四棱錐S-ABCD中,
(1)求四棱錐S-ABCD的體積;
(2)求證:
(3)求SC與底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.
(Ⅰ) 求異面直線EF與BC所成角的大。
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知空間四邊形中,,是的中點.
(Ⅰ)求證:平面CDE;
(Ⅱ)若G為的重心,試在線段AE上確定一點F,使得GF//平面CDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面為正方形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,
(I) 求證:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示的幾何體中,四邊形為矩形,為直角梯形,且 = = 90°,平面平面,,
(1)若為的中點,求證:平面;
(2)求平面與平面所成銳二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com