已知四棱錐P-ABCD的三視圖如下圖所示,E是側棱PC上的動點.


(1)求四棱錐P-ABCD的體積;
(2)是否不論點E在何位置,都有BD⊥AE?證明你的結論;
(3)若點E為PC的中點,求二面角D-AE-B的大小.

(1)(2)連結AC,∵ABCD是正方形,∴BD⊥AC∵PC⊥底面ABCD,且BD?平面ABCD,∴BD⊥PC又∵AC∩PC=C,∴BD⊥平面PAC∵不論點E在何位置,都有AE?平面PAC∴不論點E在何位置,都有BD⊥AE(3)

解析試題分析:(1)由三視圖可知,四棱錐P-ABCD的底面是邊長為1的正方形,
側棱PC⊥底面ABCD,且PC=2.                   1分
,即四棱錐P-ABCD的體積為.   3分
(2)不論點E在何位置,都有BD⊥AE.                   4分
證明如下:連結AC,∵ABCD是正方形,∴BD⊥AC.          5分
∵PC⊥底面ABCD,且BD?平面ABCD,∴BD⊥PC.          6分

又∵AC∩PC=C,∴BD⊥平面PAC.          7分
∵不論點E在何位置,都有AE?平面PAC.
∴不論點E在何位置,都有BD⊥AE.          8分
(3)解法1:在平面DAE內(nèi)過點D作DF⊥AE于F,連結BF.
∵AD=AB=1,DE=BE=,AE=AE=,
∴Rt△ADE≌Rt△ABE,
從而△ADF≌△ABF,∴BF⊥AE.
∴∠DFB為二面角D-AE-B的平面角.                 10分
在Rt△ADE中,DF=, ∴BF=.          11分
又BD=,在△DFB中,由余弦定理得
cos∠DFB=,                12分
∴∠DFB=,           
即二面角D-AE-B的大小為.                     13分
解法2:如圖,以點C為原點,CD,CB,CP所在的直線分別為x,y,z軸建立空間直角坐標系.則D(1,0,0),A(1,1,0),B(0,1,0),E(0,0,1),               9分

從而=(0,1,0),=(-1,0,1),=(1,0,0),=(0,-1,1).
設平面ADE和平面ABE的法向量分別為
,
,取
,取 11分
設二面角D-AE-B的平面角為θ,
,    12分
∴θ=,即二面角D-AE-B的大小為     .    13分
考點:三視圖,空間線面垂直及線線角
點評:本題先由三視圖得到幾何體的特征,把握住CD,CB,CP兩兩垂直,因此可借助于空間向量法判定線面的垂直關系與求解二面角

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(12分)如圖,在三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分別是線段BC,B1C1的中點,P是線段AD的中點.

(I)在平面ABC內(nèi),試做出過點P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1;
(II)設(I)中的直線l交AB于點M,交AC于點N,求二面角A﹣A1M﹣N的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設正四棱錐的側面積為,若

(1)求四棱錐的體積;
(2)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,四邊形ABCD是矩形,,F(xiàn)為CE上的點,且BF平面ACE,AC與BD交于點G

(1)求證:AE平面BCE
(2)求證:AE//平面BFD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,空間四邊形的對棱、的角,且,平行于的截面分別交、、、

(1)求證:四邊形為平行四邊形;
(2)的何處時截面的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,幾何體中,四邊形為菱形,,,面∥面,、都垂直于面,且,的中點.

(Ⅰ)求證:為等腰直角三角形;
(Ⅱ)求證:∥面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知棱柱的底面是菱形,且,,,為棱的中點,為線段的中點,

(Ⅰ)求證: ;
(Ⅱ)判斷直線與平面的位置關系,并證明你的結論;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在正三角形中,、分別是、、邊上的點,滿足(如圖1).將△沿折起到的位置,使二面角成直二面角,連結、(如圖2)
    
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案