(本小題滿分12分)已知橢圓C:過點(diǎn),且長軸長等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是橢圓C的兩個(gè)焦點(diǎn),⊙O是以F1F2為直徑的圓,直線l: y=kx+m與⊙O相切,并與橢圓C交于不同的兩點(diǎn)AB,若,求的值

解:(Ⅰ)由題意橢圓的長軸2=4,得a=2,    ……………………………………1分
點(diǎn)在橢圓上,    ……………………………………3分
∴橢圓的方程為……………………………………………………………4分
(Ⅱ)由直線l與圓O相切得 ……………………………5分
設(shè),由消去,
整理得 ………………………………………-6分
由題可知圓O在橢圓內(nèi),所以直線必與橢圓相交   …………………………7分
      ……………………………………………8分
=
== ……………………………9分
…………………………10分
         …………………………………11分
…………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓與曲線無交點(diǎn),則橢圓的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
過橢圓的一個(gè)焦點(diǎn)且垂直于軸的直線交橢圓于點(diǎn)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點(diǎn)的直線與橢圓交于兩點(diǎn)、,使得(其中為弦的中點(diǎn))?若存在,求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓過點(diǎn),長軸長為,過點(diǎn)C(-1,0)且斜率為k的直線l與橢圓相交于不同的兩點(diǎn)A、B.
(1)求橢圓的方程;
(2)若線段AB中點(diǎn)的橫坐標(biāo)是求直線l的斜率;
(3)在x軸上是否存在點(diǎn)M,使是與k無關(guān)的常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知是橢圓C的兩個(gè)焦點(diǎn),、為過的直線與橢圓的交點(diǎn),且的周長為
(Ⅰ)求橢圓C的方程;
(Ⅱ)判斷是否為定值,若是求出這個(gè)值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),過F1且垂直于x軸的直線與橢圓交于AB兩點(diǎn),若△ABF2為正三角形,則該橢圓的離心率是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的一條準(zhǔn)線經(jīng)過拋物線的焦點(diǎn),則該橢圓的離心率為                                                              (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的兩個(gè)焦點(diǎn)和短軸兩個(gè)頂點(diǎn)是有一個(gè)內(nèi)角為的菱形的四個(gè)頂點(diǎn),則橢圓的離心率為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


橢圓的一焦點(diǎn)與短軸兩頂點(diǎn)組成一個(gè)等邊三角形,則橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案