已知傾斜角為的直線過橢圓的右焦點(diǎn),則被橢圓所截的弦長
是                                                            (   )
A. B.C. D.
D

設(shè)直線方程為,代入橢圓右焦點(diǎn),可得,設(shè)直線及橢圓兩交點(diǎn)分別為,聯(lián)立方程,可得,即,則,,由弦長公式可知被橢圓所截的弦長為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分11分)已知拋物線關(guān)于軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過點(diǎn)。
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若的三個(gè)頂點(diǎn)在拋物線上,且點(diǎn)的橫坐標(biāo)為1,過點(diǎn)分別作拋物線的切線,兩切線相交于點(diǎn),直線軸交于點(diǎn),當(dāng)直線的斜率在上變化時(shí),直線斜率是否存在最大值,若存在,求其最大值和直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我國計(jì)劃發(fā)射火星探測器,該探測器的運(yùn)行軌道是以火星(其半徑百公里)的中心為一個(gè)焦點(diǎn)的橢圓. 如圖,已知探測器的近火星點(diǎn)(軌道上離火星表面最近的點(diǎn))到火星表面的距離為百公里,遠(yuǎn)火星點(diǎn)(軌道上離火星表面最遠(yuǎn)的點(diǎn))到火星表面的距離為800百公里. 假定探測器由近火星點(diǎn)第一次逆時(shí)針運(yùn)行到與軌道中心的距離為百公里時(shí)進(jìn)行變軌,其中、分別為橢圓的長半軸、短半軸的長,求此時(shí)探測器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)在平面直角坐標(biāo)系xOy中,已知三點(diǎn)A(-1,0),B(1,0),,以A、B為焦點(diǎn)的橢圓經(jīng)過點(diǎn)C。
(I)求橢圓的方程;
(II)設(shè)點(diǎn)D(0,1),是否存在不平行于x軸的直線與橢圓交于不同兩點(diǎn)M、N,使
?若存在,求出直線斜率的取值范圍;若不存在,請說明理由:
(III)對于y軸上的點(diǎn)P(0,n),存在不平行于x軸的直線與橢圓交于不同兩點(diǎn)M、N,使,試求實(shí)數(shù)n的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)直線(其中,為整數(shù))與橢圓交于不同兩點(diǎn),,與雙曲線交于不同兩點(diǎn),,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左、右頂點(diǎn)分別為曲線是以橢圓中心為頂點(diǎn),為焦點(diǎn)的拋物線.
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線交于不同的兩點(diǎn)當(dāng)時(shí),求直線的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓方程為,O為原點(diǎn),F(xiàn)為右焦點(diǎn),點(diǎn)M是橢圓右準(zhǔn)線上(除去與軸的交點(diǎn))的動(dòng)點(diǎn),過F作OM的垂線與以O(shè)M為直線的圓交于點(diǎn)N,則線段ON的長為             (   )
A.B.C.D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以下五個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線與橢圓有相同的焦點(diǎn);
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③設(shè)A、B為兩個(gè)定點(diǎn),為常數(shù),若,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過拋物線的焦點(diǎn)作直線與拋物線相交于A、B兩點(diǎn),則使它們的橫坐標(biāo)之和
等于5的直線有且只有兩條。
⑤過定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若,則動(dòng)點(diǎn)P的
軌跡為橢圓
其中真命題的序號(hào)為                (寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


Ahyperbola(雙曲線)wjthvertices(頂點(diǎn))(-2,5)and(-2,-3),has  an  asynptote(漸近線)that passes  the   point(2.5)  Then  an  equarionk  of  the  hyperbola  is
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案