【題目】已知函數(shù), 為自然對數(shù)的底數(shù).
(I)若曲線在點處的切線平行于軸,求的值;
(II)求函數(shù)的極值;
(III)當(dāng)時,若直線與曲線沒有公共點,求的最大值.
【答案】(1)(2)當(dāng)時,函數(shù)無極小值;當(dāng), 在處取得極小值,無極大值.(3)1
【解析】試題分析:(1)求出,由導(dǎo)數(shù)的幾何意義,解方程即可;(2)解方程,注意分類討論,以確定的符號,從而確定的單調(diào)性,得極大值或極小值(極值點多時,最好列表表示);(3)題意就是方程無實數(shù)解,即關(guān)于的方程在上沒有實數(shù)解.一般是分類討論, 時,無實數(shù)解, 時,方程變?yōu)?/span>,因此可通過求函數(shù)的值域來求得的范圍.
試題解析:(1)由,得.
又曲線在點處的切線平行于軸,
得,即,解得.
(2),
①當(dāng)時, , 為上的增函數(shù),
所以函數(shù)無極值.
②當(dāng)時,令,得, .
,; ,.
所以在上單調(diào)遞減,在上單調(diào)遞增,
故在處取得極小值,且極小值為,無極大值.
綜上,當(dāng)時,函數(shù)無極小值
當(dāng), 在處取得極小值,無極大值.
(3)當(dāng)時,
令,
則直線: 與曲線沒有公共點,
等價于方程在上沒有實數(shù)解.
假設(shè),此時, ,
又函數(shù)的圖象連續(xù)不斷,由零點存在定理,可知在上至少有一解,與“方程在上沒有實數(shù)解”矛盾,故.
又時, ,知方程在上沒有實數(shù)解.
所以的最大值為.
解法二:
(1)(2)同解法一.
(3)當(dāng)時, .
直線: 與曲線沒有公共點,
等價于關(guān)于的方程在上沒有實數(shù)解,即關(guān)于的方程:
(*)
在上沒有實數(shù)解.
①當(dāng)時,方程(*)可化為,在上沒有實數(shù)解.
②當(dāng)時,方程(*)化為.
令,則有.
令,得,
當(dāng)變化時, 的變化情況如下表:
當(dāng)時, ,同時當(dāng)趨于時, 趨于,
從而的取值范圍為.
所以當(dāng)時,方程(*)無實數(shù)解, 解得的取值范圍是.
綜上,得的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) , 是其函數(shù)圖象的一條對稱軸. (Ⅰ)求ω的值;
(Ⅱ)若f(x)的定義域為 ,值域為[﹣1,5],求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某基建公司年初以100萬元購進(jìn)一輛挖掘機(jī),以每年22萬元的價格出租給工程隊.基建公司負(fù)責(zé)挖掘機(jī)的維護(hù),第一年維護(hù)費為2萬元,隨著機(jī)器磨損,以后每年的維護(hù)費比上一年多2萬元,同時該機(jī)器第x(x∈N* , x≤16)年末可以以(80﹣5x)萬元的價格出售.
(1)寫出基建公司到第x年末所得總利潤y(萬元)關(guān)于x(年)的函數(shù)解析式,并求其最大值;
(2)為使經(jīng)濟(jì)效益最大化,即年平均利潤最大,基建公司應(yīng)在第幾年末出售挖掘機(jī)?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次歌手大獎賽上,七位評委為歌手打出的分?jǐn)?shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有紅色、白色球各一個,每次任取一個,有放回地抽三次,計算下列事件的概率:
(1)三次顏色恰有兩次同色;
(2)三次顏色全相同;
(3)三次抽取的球中紅色球出現(xiàn)的次數(shù)多于白色球出現(xiàn)的次數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使恒成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是(寫出所有正確命題的編號)
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點;
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點;
③如果直線l經(jīng)過兩個不同的整點,則直線l必經(jīng)過無窮多個整點;
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù);
⑤存在恰經(jīng)過一個整點的直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上三個向量 的模均為1,它們相互之間的夾角均為120°.
(1)求證: ;
(2)若|k |>1 (k∈R),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè),證明:當(dāng)時, ;
(Ⅲ)設(shè)是的兩個零點,證明 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com