已知兩條直線Ox,Oy交于點O,∠xOy=
π
3
i
,
j
分別與x軸、y軸正向相同的單位向量,若
p
=x
i
+y
j
,x、y∈R,則稱
p
的“斜坐標”為(x,y),已知
a
,
b
的“斜坐標”分別為(1,2),(2,-1),則
a
b
=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用“斜坐標”的意義和數(shù)量積運算即可得出.
解答: 解:∵
i
2
=
j
2
=1
i
j
=|
i
| |
j
|cos60°
=
1
2

a
b
=(
i
+2
j
)•(2
i
-
j
)
=2
i
2
+3
i
j
-2
j
2

=2+
1
2
-2=
3
2

故答案為:
3
2
點評:本題考查了“斜坐標”的意義和數(shù)量積運算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若命題p1:y=log2014[(2-x)(2+x)]為偶函數(shù);若命題p2:y=log2014
2-x
2+x
為奇函數(shù),則下列命題為假命題的是( 。
A、p1∧p2
B、p1∨¬p2
C、p1∨p2
D、p1∧¬p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2cosxsin(x-
π
3
)+
3
sin2x+sinxcosx.
(1)求f(x)的最小正周期;
(2)設(shè)函數(shù)g(x)=f(
1
2
ωx+
π
3
(ω>0),g(
π
6
)=g(
π
3
)且g(x)在(
π
6
,
π
3
)上有最小值沒有最大值,求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-1|+x2+ax,若函數(shù)f(x)在區(qū)間(0,2)上有兩個不同的零點x1,x2,求
1
x1
+
1
x2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-3a|,(a∈R)
(I)當(dāng)a=1時,解不等式f(x)>5-|2x-1|;
(Ⅱ)若存在x0∈R,使f(x0)+x0<6成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地近年來持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了階梯水價計費方法,具體為:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.
(1)寫出每戶每月用水量x(噸)與支付費y(元)的函數(shù)關(guān)系;
(2)該地一家庭記錄了去年12個月的月用水量(x∈N*)如下表:
月用水量x(噸) 3 4 5 6 7
頻數(shù) 1 3 3 3 2
請你計算該家庭去年支付水費的月平均費用(精確到1元);
(3)今年干旱形勢仍然嚴峻,該地政府號召市民節(jié)約用水,如果每個月水費不超過12元的家庭稱“節(jié)約用水家庭”,隨機抽取了該地100戶的月用水量作出如下統(tǒng)計表:
月用水量x(噸) 1 2 3 4 5 6 7
頻數(shù) 10 20 16 16 15 13 10
據(jù)此估計該地“節(jié)約用水家庭”的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin[ωπ(x+
1
3
)]的部分圖象如圖所示,其中P為函數(shù)圖象的最高點,A,B是函數(shù)圖象與x軸的相鄰兩個交點,若y軸不是函數(shù)f(x)圖象的對稱軸,且tan∠APB=
1
2

(1)求函數(shù)f(x)的解析式;
(2)若x∈[1,2],求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=log2(4x+1)+ax是偶函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將某組樣本數(shù)據(jù)按[7.5,8.5),[8.5,9.5),[9.5,10.5]分成3組,其頻率分布直方圖如圖所示,由此估計這組樣本數(shù)據(jù)的中位數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案